September 1, 2015

SEP 0 3 2015

Mr. Ron Holcomb Central Valley Water Board 1685 E Street, Fresno, CA 93706

Subject: Fourstar Resources, LLC Order 13267 Technical Report

Mr. Holcomb:

Enclosed is the Fourstar Resources, LLC pond technical report required by CV-RWQCB Order Pursuant to California Water Code Section 13267, dated 10, June 2015.

Sincerely,

M. Jane Ellis McNaboe, PG

CC:

Derek Willshee 1110 Sungro Way Bakersfield, CA, 93311

SEP 0 3 2015

EnviroTech Consultants, Inc.

5400 Rosedale Highway Bakersfield, CA 93308 FALSAO, CALIF.

FOURSTAR RESOURCES, LLC RESPONSE TO RWQCB SECTION 13267 ORDER POND INFORMATION AND SAMPLING RESULTS

MCDONALD ANTICLINE OIL FIELD

M&B LEASE SECTION 21, T28S/R20E MDB&M

THETA LEASE SECTION 20, T28S/R20E MDB&M

Submitted: August 24, 2015

Addendum: September 1, 2015

Prepared by:

EnviroTech Consultants, Inc.

9. M. Sawyer, PC # 4450

Lorraine M. Sawyer, PG #4450

September 1, 2015

Certification Statement

RWQCB Order 13267, Pond Sampling Technical Report Fourstar resources, LLC

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine an imprisonment for knowing violations.

(Name and title)

(Date)

D.M willshee CEO

Table of Contents

1.0	IDENTIFICATION OF DISCHARGES OF PRODUCED WATER TO LAND	.1
2.0	POND SAMPLING	. 1
3.0	POND SAMPLING ANALYTICAL RESULTS	.1
4.0	INFORMATION FOR EACH SURFACE IMPOUNDMENT	.8
LIST	OF TABLES	
Table	3-1: General Chemistry	. 2
Table	3-2: Anions	. 3
Table	3-3: Metals	. 4
Table	3-4: BTEX and TPH	. 5
Table	3-5: Semi-volatile Organic Compounds	. 6
Table	3-6: Volatile Organic Compounds	.7
Table	4-1: Surface Impoundment Information	.9

ATTACHMENTS

ATTACHMENT A M&B Pond Map

ATTACHMENT B M&B Pond Site Map

ATTACHMENT C Theta Pond Map.

ATTACHMENT D Theta Pond Site Map

ATTACHMENT E Copy of RWQCB Order 13267, 10 June, 2015

ATTACHMENT F BC - Laboratory Analytical Report

IDENTIFICATION OF DISCHARGES OF PRODUCED WATER TO LAND 1.0

One pond was identified in the 13267 Order sent to Fourstar Resources, LLC by the Regional Water Quality Control Board (RWQCB) containing discharges of produced water on the M&B lease. Two ponds were identified by the RWQCB containing discharges of produced water on the Theta Lease. The 13267 Order, dated June 10, 2015, requested pond sampling for both leases. Maps of the ponds and surrounding leases are included as Attachments A, B, C, and D. There were no other active, inactive or emergency ponds located within the lease boundaries.

2.0 POND SAMPLING

Representative samples of wastewater were collected by EnviroTech Consultants, Inc. (EnviroTech) on August 3, 2015 as required by Order 13267 dated June 10, 2015 (Attachment

The samples were collected from a stock tank on the M&B Lease and from a Baker tank on the Theta Lease, both of which led directly to the active ponds on each lease, which contained little to no residual water. The ponds on the Theta Lease are in series, thus only one water sample was needed and collected. The samples were decanted into appropriate sampling containers and cooled with ice for storage and transportation to the laboratory under standard chain of custody procedures.

POND SAMPLING ANALYTICAL RESULTS 3.0

The samples were received by BC Laboratories on August 3, 2015. EnviroTech received the full laboratory analytical report on August 26, 2015. This addendum addresses the complete analytical and all information requested for each pond used by Fourstar Resources, LLC.

The analytical results are summarized in the following tables; complete laboratory reports are included in Attachment F.

Table 3-1: General Chemistry

	Sample ID	Date Sampled	Total Dissolved Solids	Calcium	lron	Magnesium	Manganese	Potassium	Sodium	Strontium	Alkalinity as CaCO3	Bicarbonate ion as HCO3	Carbonate as CO3	Hydroxide as OH
	EPA Analytic	al Method	EPA_160.1	EPA_160.1 6010B						2320B				
Ī	Unit	s						mg/L					٠	
Ī	Reportin	g limit		Reporting limits vary, see full analytical report.										
ſ								Resul	ts					
	M&B	8/3/2015	19000	83	12	340	0.11	95	7100	20	3000	3000	<8.2	<8.2
Ī	Theta	8/3/2015	14000	70	23	47	0.62	36	5800	6.6	1900	1900	<8.2	<8.2

Bold = Analyte detected at or above minimum reporting limit.

Table 3-2: Anions

		Anions, Ion Chromatography						
Sample ID	Date Sampled	Bromide	Chloride	Nitrate as NO3	Sulfate			
EPA Analyt	ical Method	300:0						
· Ur	nits	mg/L						
Reporti	ng Limit	Reporting limit varies, see full analytical report.						
					· · · · · · · · · · · · · · · · · · ·			
M&B	8/3/2015	91	11000	<22	16			
Theta	8/3/2015	46	7200	<22	16			

Bold = Analyte detected at or above minimum reporting limit.

Fourstar Resources, LLC Pond Sampling, August 2015 Response to Order Section 13267 **Table 3-3: Metals**

				·		
read	6010B				<1000	<1000
Copper		tical report.		<200	40	
JisdoO				<1000	<1000	
muimondO		full analy		<200	<200	
muimbsO		nple. See 1		<200	<200	
Boron		Reporting limit varies by sample. See full analytical report		.20*	32*	
Beryllium				<200	<200	
muins8			porting		4000	1800
oineanA			Re		<1000	<2000 <1000
ynomitnA	тА				<2000	<2000
Date	EPA Analytical Method	Units	Reporting Limit		8/3/2015	8/3/2015
Sample ID	EPA A		Repo		M&B	Theta

				•		
Mercury	7470A			0.038	<0.20	
oniZ	747	ort.	<1000	<1000		
muibensV		tical rep	<200	<200		
muillsdT			Reporting limit varies by sample. See full analytical report	<2000	<2000	
muinous		ng/L	nple. Se	20*	*9.9	
Silver	6010B	י	ries by sar	<200	<200	
muinələ2			ing limit va	<2000	<2000	
Nickel			Report	<200	<200	
Molybdenum				<1000	75	
muidii				3.1*	2.0*	
Date Sampled	EPA Analytical Method	Units	Reporting Limit	8/3/2015	8/3/2015	
Sample	EPA A	Met		M&B	Theta	

Bold = Analyte detected at or above minimum reporting limit.

*mg/L: Strontium, Lithium, and Boron

Bakersfield, CA 93308

Fax 661.377.0074

Fourstar Rèsources, LLC Pond Sampling, August 2015 Response to Order Section 13267

Table 3-4: BTEX and TPH

ganics: (GC)	C13-C40					250000	270000					
iesel Range Or	C∑3-C√0	8015B_DRO				150000	230000					
TPH as Crude Oil, Gasoline and Diesel Range Organics: (GC)	C13-C55		ng/L	Varies, see laboratory report		140000	350000					
TPH as Crude C	C4-C15	8015B_GRO		Varies, see la		0099	40000					
lato	Σylenes, Το					930	4100] :				
əu	P&M Xyleı	9 B	٦			630	2900					
	ənəlүx-O	8260 B	ng/L			310	1200	1				
	eneuloT .					6.5	28					
əu	Ethylbenze									130	880	1
	euezueg					3.8	22]				
	Date Sampled	cal Method	ts	ig Limit		8/3/2015	8/3/2015					
	Sample ID	EPA Analytical Method	Units	Reporting Limit		M&B	Theta					

Bold = Analyte detected at or above minimum reporting limit.

Fourstar Resources, LLC Pond Sampling, August 2015 Response to Order Section 13267

Table 3-5: Semi-volatile Organic Compounds

_						
	Pyrene			9.1	20	
	Phenanthrene		•	110	1000	
	Naphthalene	·		28	35	
	enenyq[bo-£,2,1]onebnl			<5.0	<5.0	
	Fluorene			38	510	
	Fluoranthene		.	4.1	5.8	i
	Dibenz(a,h)anthracene			<5.0	7.1	
	Chrysene	_SIM	<u></u>	7.4	52	
	Benzo[k]fluoranthene	8270C_SIM	ng/L	<5.0	<5.0	
	Benzo[g,h,i]perylene			<5.0	5.4	
	Benzo[b]fluoranthene			5.2	29	imit oc
	Benzo[a]byrene			<5.0	41	e minimum reporting limit
	Benzo[a]anthracene			5.3	41	in in
	Anthracene			<5.0	<5.0] im
	Acenahtithylene			2.6	84	- t
	Acenaphthene			24	120	70400
	Date Sampled	EPA Analytical Method	Units	8/3/2015	8/3/2015	Mary to potactor of loss - Fire
	Sample ID	EPA A	ח 	M&B	Theta	1 7 6

Bold = Analyte detected at or above minimum reporting i Reporting limit varies by sample. See full analytic report.

Fourstar Resources, LLC Pond Sampling, August 2015 Response to Order Section 13267

Table 3-6: Volatile Organic Compounds

b-lsopropyltoluene		,	<12	320					
sobropylbenzene			<12	150					
Sec-Butylbenzene	. ≥	5		5	5	5		<12	150
u-Butylbenzene	8270C_SIM	ng/L	<12	66					
ənəznədlyntəmirT-3,8,1	8		4.0	<12					
ənəznədlydəminT-4,2,1			15	19					
n-Propylbenzene			3.5	66					
Date Sampled	EPA Analytical Method	Units	8/3/2015	8/3/2015					
Sample	EPA An Met		M&B	Theta					

Bold = Analyte detected at or above minimum reporting limit.

Reporting limit varies by sample. See full analytic report.

*Analytes not detected were excluded in the table and can be found in the full analytical report.

Table 3-7: Radionuclides

Sample ID	Sample ID Date Sampled		Radium-226	Radium-228	Uranium		
EPA Analytica	il Method	EPA 900.0	EPA 903.1	EPA 904.0	EPA 200.8		
Units		pCi/L					
Regulatory Th	reshold*	See analytic report for threshold					
M & B	8/3/2015	1200 ± 0.110	24.5 ± 14.5	8.27 ± 8.21	< 6.7		
Theta	8/3/2015	1200 ± 0.191	12.3 ± 9.43	9.04 ± 8.05	< 6.7		

Bold = Analyte detected at or above minimum reporting limit. Reporting limit varies by sample. See full analytic report.

^{*} Title 22, Table 6443. MCL

^{- -} No MCL

4.0 INFORMATION FOR EACH SURFACE IMPOUNDMENT

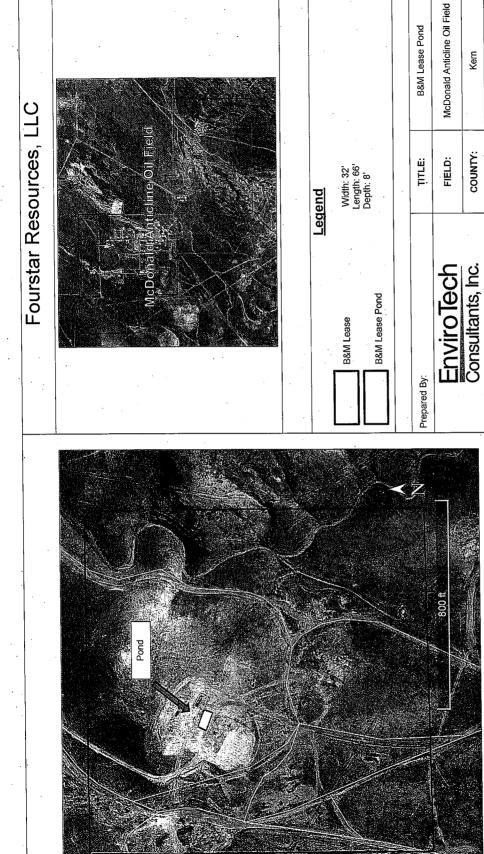

The following table contains the required information for the Fourstar Resources, LLC active ponds. The ponds will remain active and will used for discharge.

Table 4-1: Surface Impoundment Information

Pond Identification	i lmp	Surface oundmonsions (Location (NAD 83)	Assessor's Parcel Number of the Lease	Duration of discharge (months)	Volume of wastewater discharged per year (bbls)		
M&B	Length	Width	Depth	Latitude: 35.47943°	085-140-36	085-140-36 440		475	
IVICE	66'	32'	8'	Longitude: -119.83061°	000-140-00	440	475		
Th4 #4	Length	Width	Depth	Latitude: 35.48149°	085-140-21	440	475		
Theta #1	70'	28'	8'	Longitude: -119.84419°	063-140-21	440	473		
Thata #2	Length	Width	Depth	Latitude: 35.48155°	085-140-21	440	475		
Theta #2	70' 40' 8' Longitude:		Longitude: -119.84419°	003-140-21	740	4/5			

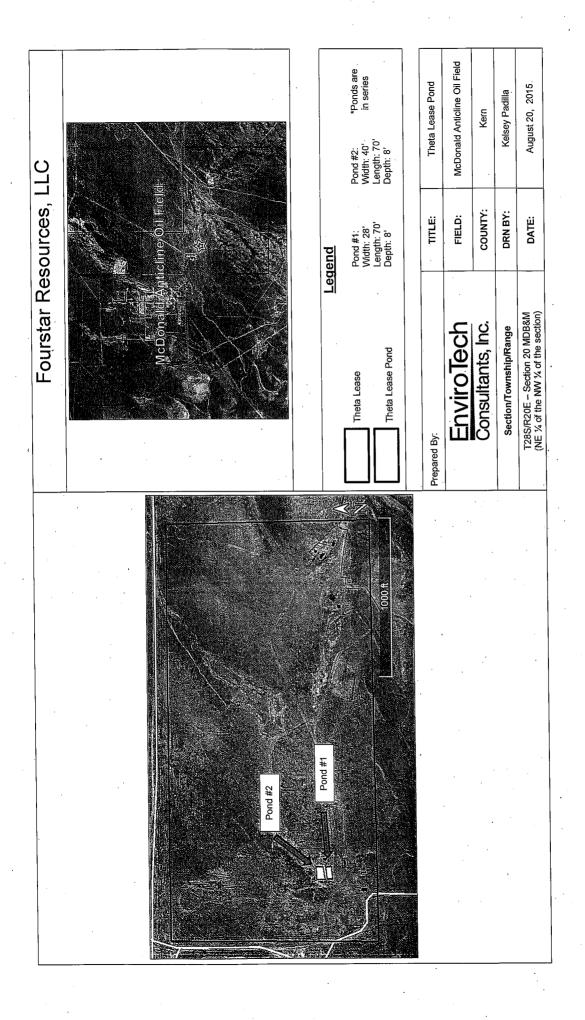
ATTACHMENT A

FOURSTAR RESOURCES, LLC M&B POND MAP

Kelsey Padilla August 20, 2015

Section/Township/Range T28S/R20E – Section 21 MDB&M (\$W ½ of the NW ½ of the section)

COUNTY: DRN BY:

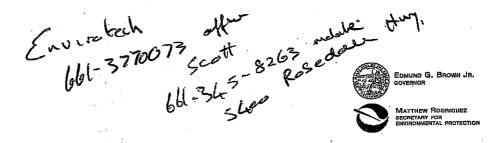

ATTACHMENT B

FOURSTAR RESOURCES, LLC
M&B POND SITE MAP

ATTACHMENT C

FOURSTAR RESOURCES, LLC
THETA POND MAP

ATTACHMENT D


FOURSTAR RESOURCES, LLC
THETA POND SITE MAP

ATTACHMENT E

FOURSTAR RESOURCES, LLC COPY OF RWQCB ORDER 13267, 10 JUNE, 2015

Central Valley Regional Water Quality Control Board

10 June 2015

Jack Pathirana Fourstar Resources, LLC PO Box 91051 City of Industry, CA 91715 CERTIFIED MAIL 7014 3490 0001 7023 3170

CALIFORNIA WATER CODE DIRECTIVE PURSUANT TO SECTION 13267. You are legally obligated to respond to this Order. Please read this Order carefully.

Fourstar Resources, LLC (hereafter Discharger) has been identified as the owner or operator of petroleum production wastewater disposal ponds (ponds). A list of the ponds (and the leases and oil fields where they are located) that the California Regional Water Quality Control Board, Central Valley Region (Central Valley Water Board) identifies as under your control is presented in Attachment A. Ponds for the disposal of wastewater generated during the course of petroleum production have the potential to affect the quality of groundwater (a water of the State). Groundwater underlying the areas where your ponds are located have beneficial uses as identified in the Water Quality Control Plan for the Tulare Lake Basin (Basin Plan).

This order requires the collection and analysis of wastewater samples collected from each of the ponds listed in Attachment A to characterize the discharge. Each sample is to be analyzed for each of the constituents listed in Attachment B. These data are needed to comprehensively characterize wastewater in each pond and provide data needed to evaluate the threat to the quality of waters of the State. If more than one pond is connected in series (i.e., one pond drains directly to the next with no other source of inflow) then only the upstream pond must be sampled. This order is not intended to require the collection of duplicative data. If during the 12 months (one year) prior to the date of this order, samples required by this order have been analyzed from one or more of the ponds for the required constituents, that data can be submitted for the appropriate order requirements.

This order also requires Discharger to identify any discharge(s) of oil field wastewater to land that is not identified in Attachment A. Discharger must also collect and analyze wastewater samples in accordance with Attachment B from any additionally identified discharge to characterize the discharge.

The Central Valley Water Board's authority to require technical reports derives from Section 13267 of the California Water Code, which specifies, in part, that:

KARL E. LONGLEY SCD, P.E., CHAIR | PAMELA C. CREEDON P.E., BCEE, EXECUTIVE OFFICER

- (a) A regional Board ... in connection with any action relating to any plan or requirement authorized by this division, may investigate the quality of any waters of the State within its region.
- (b)(1) In conducting an investigation specified in subdivision (a), the regional board may require that any person who has discharged, or is suspected of having discharged or discharging, or who proposes to discharge waste within its region, or any citizen or domiciliary, or political agency or entity of this state who has discharged, discharges, or is suspected of having discharged or discharging, or who proposes to discharge, waste outside of its region that could affect the quality of waters within its region shall furnish, under penalty of perjury, technical or monitoring program reports which the regional board requires. The burden, including costs, of these reports shall bear a reasonable relationship to the need for the report and the benefit to be obtained from the reports. In requiring those reports, the regional board shall provide the person with a written explanation with regard to the need for the reports, and shall identify the evidence that supports requiring that person to provide the reports.

The Central Valley Water Board is concerned about the potential impacts to water quality posed by the discharge of oil field produced waters in surface ponds. The technical information and reports required by this order are necessary to assess the potential threat to water quality. The need to understand the potential impacts to water quality justify the need for the information and reports required by this order. Based on the nature and possible consequences of the discharges of waste, the burden of providing the required information, including the reporting costs, bears a reasonable relationship to the need for the report, and the benefits to be obtained. Discharger is required to submit this information and reports because it is the operator of the ponds listed in Attachment A of this order.

The unauthorized discharge of waste containing oil field waste constituents to land, including unlined ponds, may result in the degradation of water quality and creates or threatens to create, a condition of pollution in groundwater. Significant concentrations of salinity (measured as TDS and EC), significant contributors to salinity such as chloride and sulfate, and boron are present in oil field wastewater. Other potential constituents such as, but not limited to, metals, radionuclides, and organic compounds pose a threat to water quality. The concentrations of these waste constituents in wastewater being discharged needs to be known to evaluate the threat. In addition, all locations where these discharges are occurring needs to be known.

Underlying groundwater can be degraded if mixed with oil field wastewater. Elevated concentrations of oil field waste constituents could impair the groundwater for municipal and domestic supply and agricultural supply uses.

Under the prescribed authority of California Water Code section 13267, the Central Valley Water Board directs Discharger to:

- 1. By 25 August 2015, submit a technical report containing the following information:
 - A. Identification of any discharges of oil field produced waters to land, including but not limited to ponds, since April of 2014 that are not listed in Attachment A;
 - B. Collect representative samples of wastewater within each of the ponds. Samples must be analyzed in accordance with the water quality analysis and reporting requirements contained in Attachment B to this Order;¹

If a representative sample cannot feasibly be collected from one or more of the sources discharging to a surface impoundment(s), then a comment will need to be added to the technical report required by this Order demonstrating that collection of a representative sample from a specific source is not feasible within the required timeframe, and propose an alternative sampling procedure and expeditious time schedule for obtaining a representative sample for each source. Alternative sampling procedures and time schedules are subject to approval by the Assistant Executive Officer of the Central Valley Regional Water Quality Control Board.

- C. All available information for each of the surface impoundment(s), including dimensions (i.e., length, width, and depth), latitude and longitude, Assessor's Parcel Numbers of the lease, duration of the discharge (in months), and the volume of wastewater discharged per year.
- D. A location map that includes the following information:
 - i. All surface impoundment(s) at the Facility,
 - ii. Include the boundary lines for all leases at the Facility, and
 - iii. Legend with the name of the surface impoundment(s).
- 2. **By 24 June 2015**, Discharger needs to contact Ron Holcomb of this office at (559) 445-6050 if you have received this Order and cannot collect the required samples.

¹ All previously obtained analytical data for oil field produced wastewater samples collected at the Facility, if any, with a description of the source and location for each analysis may be submitted in the alternative for re-running tests if the sample(s) was collected and analyzed within 12 months (one year) of the date of this order.

Section 13267 Order Jack Pathirana Fourstar Resources, LLC

The technical report required by this Order must be submitted to the attention of:

Ronald Holcomb Central Valley Water Board 1685 E Street Fresno, CA 93706

Based on the information submitted in the technical report, additional information or action may be required.

With the report required by this Order, Discharger shall provide under penalty of perjury under the laws of California a "Certification" statement to the Central Valley Water Board. The "Certification" shall include the following signed statement:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

The Central Valley Water Board reserves the right to issue a Notice of Violation or pursue enforcement for Discharger's activities after reviewing the documentation provided in response to this Order.

The technical report is to be signed and stamped by a California Professional Engineer (Registered as a Civil Engineer) or a registered California Professional Geologist. Any laboratory analyses shall be performed by an analytical laboratory certified by the State of California for the analyses performed. Submissions pursuant to this Order shall include a statement by Discharger, or an authorized representative of Discharger, certifying (as described above) that the information submitted is true, complete, and accurate.

The failure to furnish the required report, or the submission of a substantially incomplete report or false information, is a misdemeanor, and may result in additional enforcement actions being taken against Discharger, including issuance of an Administrative Civil Liability Complaint pursuant to California Water Code section 13268. Liability may be imposed pursuant to California Water Code section 13268 in an amount not to exceed one thousand dollars (\$1,000) for each day in which the violation occurs. All discharges to unpermitted ponds should cease pending review and submission of the technical information sought by this order.

Any person aggrieved by this action of the Central Valley Water Board may petition the State Water Resources Control Board (State Water Board) to review the action in accordance with

Section 13267 Order Jack Pathirana Fourstar Resources, LLC

California Water Code section 13320 and California Code of Regulations, title 23, sections 2050 and following. The State Water Board must receive the petition by 5:00 p.m., within 30 days after the date of this directive, except that if the thirtieth day following the date of this directive falls on a Saturday, Sunday, or state holiday, the petition must be received by the State Water Board by 5:00 p.m. on the next business day. Copies of the law and regulations applicable to filing petitions may be found on the Internet at:

www.waterboards.ca.gov/public notices/petitions/water quality or will be provided upon request.

If you have any questions regarding this matter, please contact Dale Harvey of this office at (559) 445-6190 or at dale.harvey@waterboards.ca.gov.

Clay L. Rodgers

Assistant Executive Officer

Clay L. Fedgers

cc: Julie Macedo, Office of Enforcement, State Water Resources Control Board, Sacramento Mike Toland, California Division of Oil, Gas, and Geothermal Resources, Bakersfield

ATTACHMENT A

The following table contains the names of oil fields and lease(s) and the corresponding number of ponds that the Central Valley Water Board has identified as active and under your control:

, <u> </u>	•			NO. Ot
OPERATOR	OIL FIELD	LEASE	•	Ponds
Fourstar Resources LLC	McDonald Anticline	M&B	٠	1
		Theta		2

ATTACHMENT B

Water Quality Analysis

Wastewater samples collected from the ponds shall be analyzed by a laboratory certified by the Environmental Laboratory Accreditation Program using currently applicable United States Environmental Protection Agency-approved analytical methods for water for the following:

- A. Total dissolved solids;
- B. Metals listed in California Code of Regulations, title 22, section 66261.24. subdivision (a)(2)(A);
- C. Benzene, toluene, ethylbenzene, and xylenes:
- D. Total petroleum hydrocarbons as crude oil;
- E. Polynuclear aromatic hydrocarbons (including acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a]pyrene, benzo[g,h,i]perylene, chrysene, dibenzo[a,h]anthracene, fluoranthene, fluorine, indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, and pyrene);
- F. Radionuclides listed under California Code of Regulations, title 22, Table 64442;
- G. Major and minor cations (including sodium, potassium, magnesium, and calcium);
- H. Major and minor anions (including nitrate, chloride, sulfate, carbonate, bicarbonate, and bromide);
- I. Trace elements (including lithium, strontium, boron, iron, and manganese).

Reporting Requirements

Water Quality information shall be submitted in a technical report that includes at a minimum:

- A. Site plan(s) with the location(s) of where the samples were collected;
- B. A description of how the samples, representative of the pond contents, were collected;

Table(s) of analytical results organized by pond number with the data also submitted electronically as an Excel spreadsheet.

ATTACHMENT F

FOURSTAR RESOURCES

BC- LABORATORY ANALYTICAL REPORT

Date of Report: 08/26/2015

Kelsey Padilla

Enviro Tech Consultants, Inc.

5400 Rosedale Highway

Bakersfield, CA 93308

Client Project:

Fourstar

BCL Project:

Produced Water Pond Testing

BCL Work Order:

1518827

Invoice ID:

B211811

Enclosed are the results of analyses for samples received by the laboratory on 8/3/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mim). VS

Contact Person: Kerrie Vaughan

Client Services

In the

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sampl	le Information	
•	Chain of Custody and Cooler Receipt form	3
	Laboratory / Client Sample Cross Reference	
Sampl	le Results	
	1518827-01 - M&B	• .
	Volatile Organic Analysis (EPA Method 8260B)	7
	Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)	10
	Purgeable Aromatics and Total Petroleum Hydrocarbons	11
	Total Petroleum Hydrocarbons	
	Water Analysis (General Chemistry)	
	Metals Analysis	
	1518827-02 - Theta	
	Volatile Organic Analysis (EPA Method 8260B)	15
	Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)	
	Purgeable Aromatics and Total Petroleum Hydrocarbons	19
	Total Petroleum Hydrocarbons	20
	Water Analysis (General Chemistry)	
	Metals Analysis	
Qualit	ty Control Reports	
Quant	Volatile Organic Analysis (EPA Method 8260B)	
	Method Blank Analysis	23
	Laboratory Control Sample	27
	Precision and Accuracy	28
•	Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM) Method Blank Analysis	30
	Laboratory Control Sample	31
	Precision and Accuracy	32
	Purgeable Aromatics and Total Petroleum Hydrocarbons	
	Method Blank Analysis	34
	Laboratory Control Sample	35
	Precision and Accuracy	36
	Total Petroleum Hydrocarbons Method Blank Analysis	37
,	Laboratory Control Sample	38
	Description and Assurance	30
	Precision and Accuracy	
	Water Analysis (General Chemistry) Method Blank Analysis	. 40
	Laboratory Control Sample	۱۳۸۲
	Precision and Accuracy	42
	Metals Analysis	12
•	Method Blank Analysis	43
	Laboratory Control Sample	44
	Precision and Accuracy	45
Subc	contract Reports	
	WO_1518827_SUB_BSKSA.pdf	48
	WO_1518827_SUB_PACEA.pdf	57
Notes	S	
	Notes and Definitions	70

Report ID: 1000389266

Chain of Custody and Cooler Receipt Form for 1518827 Page 1 of 3

15-1877 masses a substantial of Custody	CHAILL OF CUSIONS	ANALYSIS REQUESTED				or/ Minor			3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								7957			Tion 1		770,700 - 70
15-19827 monomorphisms of 272 hoin of 0.1140		SIS REQ	shons			uclear arc	<u>-</u>		2	2	-	+				-	$\ \cdot\ $	Ü					
\mathcal{M} :		ALY	xAjeues	'əvəzuəq	liydi3	anəuloT ,ər	ezueg		,	,	T.	+					\Box	Company	Сотрапу		tenal:		
5	_11 <i>G</i>	¥				tals	əΜ		,	,	Ī	+		$\overline{\mathbb{H}}$							ok(Casu/Card P acking Materia		
						· S	αı		,	,		z	, [Pack		
	\X*#:	kpadilla@envirotechteam.com	□ the □o	Tuline Co	lance v N		Solid	Code	See Attachment for full analysis	See Attachment for full analysis		DISTRIBUTION						Received by (Signature and Print Name)	Received by (Signature and Print Name)	ed at Delivery	Amount	BLUE NONE	
bs.com	TEMP: TEMP: Plone * B: (F661) 703-0065 FAX * #:	dilla@enviro	Carbon Copiest CDFIS Fresno Co	Merced Co	Regulatory Compliance		= Bottled Water Orinking Water SO = Solid	Comments / Station Code	See Attachmen	See Attachmen		CHK BY)/14/	bus October 1980 Control of the Cont					Received by (Signar	Payment Received at Delivery	Date ethod	WBT	•
www.bcla	19:00 * 11: (66.	E-mail: kpa	8			Result Request ** Surcharge	Water . BW :	Marrix *	Water	Water								Time 1320	Time	Time	Cooling M		•
, Ca. 93308	2	ы	zip*	#		Result Request ** Surcharge StD = Day**	rinated Waste W = Storm Wa		S S S S S S S S S S S S S S S S S S S									Date 4/4/5	Date	Date			
4100 Attas Court Bakersfield, Ca. 93308 (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com	Report Attention *:	Kelsey Padilla	State *	PO# BCL Quote#	How would you like your completed results sent? VE-Mail Fax VEDD Mail Only	QC Request Result Requ	Clorinated Finished Water CWW = Chorinated Waste Water BW = Bottled Water finished Water WW = Waste Water SW = Storm Water DW = Drinking Water	Sample Description (Location:	7	T _A			HOLDING TIME		BCH) WBWB			Company Left	Company			SIVC BED L'X OTHER	
FORIËS.			ciy • Bake		esults sent? VE-M	The state of the s	RSW = Raw Sturfaco Water CFW = CI	Sample Descrip	W . 8 3	The	·		1331		<u>15</u> 00 00 00 00 00 00 00 00 00 00 00 00 00			Mainet	rd Name)	rin(ed Name)		GAO UPS GSO WALK-IN	
LABORATORIËS	Name *:	EnviroTech Consultants	Address * 5400 Rosedale Hw	ion:	likė your completed n	Sampler Name Printed / Signature Kelsey Padilla/	1	Sampled		5/1/6/8		72.27						Relinquished by: (Signatative and Painto Wago	Relinquished by: (Signature and Printed Name)	by. (Signature and P.	indi	GAO UPS	
BC	* Required Fields	Envirol	Address • 5400 Ros	Project Information: Fourstar	How would you	Sampler Name Printed / Signati	Matrix Types:	Sample #	0/ 1-	0/1.								clinquished by:	clinquished by:	Recoived for liab by	Shipping Met		

Chain of Custody and Cooler Receipt Form for 1518827 Page 2 of 3

BC LABORATORIES INC.		CC	OLER F	RECEIPT I	ORM			Page	<u> [01</u>			
Submission #: 15-1882-	7 _					<u>· </u>						
SHIPPING INFO	RMATION	Delivery	X	Ice Che	st DX i	CONTAIN None □ ify)	Box □		REE LIQU ES D NO			
Refrigerant: Ice X Blue Ic	e □ None	□	ther 🏻	Comm	ents:			; ;				
Custody Seals Toe Chest III	Containe Intail: Yes	is 🛈 🥇	None	⊠ Comr	nents:		•		מט			
All samples received? Yes ₩ No □	All samples								os E No (
COC Received IXYES □ NO	Emissivity:								e\$ <i> 3 151;</i> nit_ <i>YM#</i>			
		nperature: (A) 15.5 °C / (C) 15.6 °C Analyst Init VMB SAMPLE NUMBERS										
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9 .	10		
OT PE UNPRES YUN	DE						<u> </u>					
4oz / 8oz / 16oz PE UNPRES		ļ		<u> </u>		ļ	<u> </u>		 			
20z Cr16						ļ			<u> </u>			
OT INORGANIC CHEMICAL METALS M	OS FG			<u> </u>			<u> </u>					
INORGANIC CHEMICAL METALS 40z / 80z	1607 H	1				<u> </u>		<u> </u>	1	<u> </u>		
PT CYANIDE	\leq			<u> </u>								
PT NITROGEN FORMS				ļ			 	 	 			
PT TOTAL SULFIDE		<u> </u>		 		 				 		
20z. NITRATE / NITRITE		 		 	ļ <u>.</u>		 	 	 			
PT TOTAL ORGANIC CARBON		1		 		 	 	 	 	 		
PT CHEMICAL OXYGEN DEMAND		 		 	 		 	 				
PIA PHENOLICS		 	<u> </u>	 	 	 	 	 	 			
40ml VOA VIAL TRAVEL BLANK	0 100 0			1	 	 	 	 	 			
40ml VOA VIAL 100 DOBANA 091	/ ABC	 		 	 	 	 	<u> </u>	 			
QT EPA 1664	.			 		 	 	 	†	 		
PT ODOR	<u> </u>	 	 	 		-	 	 	1			
RADIOLOGICAL		 	 	 		╆╌┈┈	 			<u> </u>		
BACTERIOLOGICAL		-		 		<u> </u>			1			
40 ml VOA VIAL-504		1		1	 							
OT EPA 508/608/8080		1		1			1					
OT EPA 515.1/8150 OT EPA 525		 										
					· .	T						
QT EPA 525 TRAVEL BLANK 40ml EPA 547		1	T						<u> </u>			
40mi EPA 531.1												
40mi EPA 531.1 80z EPA 548		1										
OT EPA 549	- · ·	. :						<u> </u>		<u> </u>		
OT EPA 8015M							<u> </u>	<u> </u>	ļ			
OT EPA 8270						<u> </u>	ļ	<u> </u>	ļ	<u> </u>		
80z / 160z / 320z MBER X2	21	,				<u> </u>		<u> </u>		<u> </u>		
80z / 160z / 320z JAR		<u> </u>		ļ		· ·	 	<u> </u>	 	 		
SOIL SLEEVE			ļ		ļ	 	ļ	}	 	 		
PCB VIAL			<u> </u>	ļ	<u> </u>			 	 	 		
PLASTIC BAG			 	 	 	 	-		+	 		
TEDLAR BAG			ļ	-	 	 	 	1	 	 		
FERROUS IRON					 	 	+	 	 	 		
ENCORE		<u> </u>	 	1	 		+	 	`	 		
SMART KIT				<u> </u>				· · ·	_	 		
SUMMA CANISTER		L		<u> </u>	<u></u>	<u></u>		<u>L</u> _		<u> </u>		
	HM our	-/	6 N	1 11 017	011/31 me: 8/31	11		<i>a</i>				

Report ID: 1000389266

Page 4 of 70

Chain of Custody and Cooler Receipt Form for 1518827 Page 3 of 3

BC LABORATORIES INC. Submission #: 15-18827		CC	OOLER F	RECEIPT	FORM			Page	<u>7</u> 0	of <u>Z</u>		
SHIPPING INFORM Fed Ex UPS Ontrac BC Lab Field Service Other Other	Hand	Delivery	×	Ice Che		CONTAIN None 🏻 sify)			REE LIQ			
Refrigerant: Ice XI⁻ Blue Ice □	None	□ 0	ther 🗆									
Custody Seals (ce Chestell	Container	s □ No □	None	Comr	nents:			V	/			
All samples received? Yes ☑ No □ A	il samples c	ontainers	intact? Y				ion(s) mate		7 /			
000 11000	mperature:				-			5 .	168/3/15 Init <u>I/M</u>			
CAMPIE CONTAINEDE					SAMPLE	NUMBERS	1	1				
SAMPLE CONTAINERS	1 12	2	3	4	5	6	7	8_	9	10		
OT PE UNPRES X46	DE				ļ	 	L :	 	-	 		
4oz/8oz/16oz PE UNPRES	<u> </u>	ļ			<u> </u>	<u> </u>	 	+		+		
20z Cr ¹⁵	1		ļ	<u> </u>	ļ		-	 	<u> </u>	+		
OT INORGANIC CHEMICAL METALS MIR	F6_		·	<u> </u>		<u> </u>	ļ		ļ	+		
INORGANIC CHEMICAL METALS 402 / 802 1602	H				<u> </u>		<u> </u>	 		1		
PT CYANIDE	1				<u> </u>		ļ		1	 		
PT NITROGEN FORMS								1				
PT TOTAL SULFIDE							<u> </u>	ļ	<u> </u>	_		
20z. NITRATE/NITRITE								<u> </u>	ļ			
PT TOTAL ORGANIC CARBON	1								<u> </u>	<u> </u>		
PT CHEMICAL OXYGEN DEMAND	i							<u> </u>				
PI CHEMICAL OXYGEN DEMAND PIA PHENOLICS												
• • • • • • • • • • • • • • • • • • • •				<u> </u>								
40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL AVIAL	AVAC.											
	1716		1	T								
QT EPA 1664	·····	 					T	1				
PT ODOR	1	 	 						1			
RADIOLOGICAL	1	 		 		<u> </u>		 	1			
BACTERIOLOGICAL	1	-	 		 	 	1	1	1	1		
40 ml VOA VIAL- 504	1	 	 	 		 	 	1	1			
QT EPA 508/608/8080	-	 	1	 	1							
QT EPA 515.1/8150	 	 	 	-	 	 		 	 	1		
QT EPA 525 ·		 		1								
QT EPA 525 TRAVEL BLANK	1	 	<u> </u>	 	1.							
40ml EPA 547	ļ	<u> </u>		ļ <u> </u>	 	 	 	 	+	+		
40ml EPA 531.1		<u> </u>			ļ	-	 	+	-	 		
80z EPA 548	ļ	<u> </u>			 	ļ <u>-</u>	_		-	+		
QT EPA 549	<u> </u>	• : •		<u> </u>	<u> - </u>	ļ			 			
QT EPA 8015M	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>		4	<u> </u>	ļ			
OT EPA 8270	1		<u> </u>		ļ	<u> </u>	<u> </u>			 		
80z / 160z (320z AMBER) 831	1工2	ļ	<u> </u>	<u> </u>	ļ		 	 	 			
80z/160z/320zJAR	<u></u>	<u> </u>			<u> </u>	ļ	1	1	-			
SOIL SLEEVE			<u> </u>	<u> </u>	ļ			+		- 		
PCB VIAL				<u> </u>	ļ	ļ			 			
PLASTIC BAG			·		<u> </u>	<u> </u>		i i				
TEDLAR BAG		L		<u> </u>				: :	<u> </u>			
FERROUS IRON									<u> </u>			
ENCORE	T							:	<u>.</u>			
<u> </u>	 	 	 				T	. •				
SMART KIT	 	+	 	 	 	 	1	 	1	1		
SUMMA CANISTER		<u> </u>	<u> </u>			<u></u>		<u> </u>				

Report ID: 1000389266

Page 5 of 70

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

Reported:

08/26/2015 10:22 Project: Produced Water Pond Testing

Project Number: Fourstar

Project Manager: Kelsey Padilla

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on ·		
1518827-01	COC Number:	· · · · · · · · · · · · · · · · · · ·	Receive Date:	08/03/2015 13:20
	Project Number:	-	Sampling Date:	08/03/2015 10:05
	Sampling Location:		Sample Depth:	
	Sampling Point:	M & B	Lab Matrix:	Water
	Sampled By:	Kelsey Padilla	Sample Type:	Aqueous
1518827-02	COC Number:		Receive Date:	08/03/2015 13:20
	Project Number:		Sampling Date:	08/03/2015 10:35
	Sampling Location:	·	Sample Depth:	
	Sampling Point:	Theta	Lab Matrix:	Water
	Sampled By:	Kelsey Padilla	Sample Type:	Aqueous

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

3CL Sample ID: 1518827-01	Client Sampl	e Name:	M & B, 8/3	3/2015 · 10:				
Constituent	Result	Units	PQL	MDL.	Method	MB Bias	Lab Quals	Run#
Benzene	3.8	ug/L	12	2.1	EPA-8260B	ND	J,A01	1
Bromobenzene	. ND	ug/L	12	3.2	EPA-8260B	ND	A01	. 1
Bromochloromethane	ND .	ug/L	12	6.0	EPA-8260B	ND	A01	1
Bromodichloromethane	ND	ug/L	12	3.5	EPA-8260B	ND	A01	.1
Bromoform	ND	ug/L	. 12	6.8	EPA-8260B	ND	A01	1
Bromomethane	ND	ug/L	. 25	6.2	EPA-8260B	ND	A01	1
n-Butylbenzene	. ND	ug/L	12	2.8	EPA-8260B	ND	A01	· 1
sec-Butylbenzene	ND	ug/L	. 12 .	. 3.8	EPA-8260B	ND	A01	1
ert-Butylbenzene	. ND	ug/L	. 12	3.2	EPA-8260B	ND	A01	. 1
Carbon tetrachloride	ND	ug/L	12	4.5	EPA-8260B	ND	A01	1 .
Chlorobenzene	ND	ug/L	12	2.3	EPA-8260B	ND	A01	1
Chloroethane	ND	ug/L	12	3.5	EPA-8260B	ND	A01	1
Chloroform	ND	ug/L	· 12	3.0	EPA-8260B	ND	A01	1
Chloromethane	ND .	ug/L	12	3.5	EPA-8260B	ND	A01	1
2-Chlorotoluene	ND	ug/L	12	5.0	EPA-8260B	ND	A01	1
4-Chlorotoluene	ND	ug/L	12	3.8	EPA-8260B	· ND ·	. A01	1
Dibromochloromethane	ND	ug/L	12	3.2	EPA-8260B	ND	A01	1
1,2-Dibromo-3-chloropropane	ND	ug/L	25	11	EPA-8260B	, ND	. A01	. 1
1,2-Dibromoethane	ND	ug/L	12	4.0	EPA-8260B	ND	A01	1
Dibromomethane	, ND	ug/L	12	6.0	EPA-8260B	ND	A01 . ·	. 1
1,2-Dichlorobenzene	, ND	ug/L	12	1.8	EPA-8260B	ND	A01	. 1
1,3-Dichlorobenzene	ND	ug/L	. 12	3.8	EPA-8260B	ND .	A01 .	1
1,4-Dichlorobenzene	ND	ug/L	12	1.6	EPA-8260B	ND	A01	1
Dichlorodifluoromethane	ND	ug/L	, 12	2.5	EPA-8260B	ND	A01	. 1
1,1-Dichloroethane	ND	ụg/L	12	2.8	EPA-8260B	ND	A01	1
1,2-Dichloroethane	ND	ug/L	12	4.2	EPA-8260B	ND	A01	• 1
1,1-Dichloroethene	ND	ug/L	12	4.5	EPA-8260B	· ND	A01	1
cis-1,2-Dichloroethene	ND	ug/L	12	2.1	EPA-8260B	ND	A01	1
trans-1,2-Dichloroethene	ND	ug/L	12	3.8	EPA-8260B	ND	A01	1
1,2-Dichloropropane	ND	ug/Ļ	12	3.2	EPA-8260B	ND	A01	- 1
1,3-Dichloropropane	ND	ug/L	12	2.2	EPA-8260B	ND	A01	1
2,2-Dichloropropane	ND	ug/L	. 12	3.2	EPA-8260B	ND	A01	. 1
1,1-Dichloropropene	. ND	ug/L	12	2.1.	EPA-8260B	ND	A01	. 1

Report ID: 1000389266

Page 7 of 70

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 15	18827-01	Client Sampl	e Name:	M & B, 8/3	3/2015 10:	05:00AM, Kelsey	Padilla	iilla		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
cis-1,3-Dichloropropene		ND	ug/L	12	3.5	EPA-8260B	ND	A01	1	
rans-1,3-Dichloropropene		ND	ug/L	12	2.0	EPÄ-8260B	ND	A01	. 1	
Ethylbenzene		130	ug/L	12	2.4	EPA-8260B	ND	A01	1	
lexachlorobutadiene		ND	ug/L	12	4.2	EPA-8260B	ND	A01	1	
sopropylbenzene		ND	ug/L	12	. 3.5	EPA-8260B	ND .	A01	. 1	
-Isopropyltoluene	•	, ND	ug/L	12	3.0	EPA-8260B	ND	A01	1	
Methylene chloride		· ND	ug/L	25	12	EPA-8260B	. ND	A01	. 1	
lethyl t-butyl ether		ND	ug/L	12	2.8	EPA-8260B	ND	A01	1	
laphthalene		ND	ug/L	12	9.0	EPA-8260B	ND	A01	1	
-Propylbenzene		3.5	ug/L	12	2.8	EPA-8260B	ND	J,A01	1	
Styrene		ND	ug/L	12	1.7	EPA-8260B	ND	A01	1	
,1,1,2-Tetrachloroethane		ND	ug/L	12	4.5	EPA-8260B	ND	A01	1	
,1,2,2-Tetrachloroethane		ND	ug/L	12	4.2	EPA-8260B	, ND	A01	1	
etrachloroethene		ND	ug/L	12	3.2	EPA-8260B	ND.	A01	1	
oluene		6.5	ug/L	12	2.3	EPA-8260B	ND	J,A01	1	
,2,3-Trichlorobenzene		ND .	ug/L	12	4.0.	EPA-8260B	ND	A01	. 1	
,2,4-Trichlorobenzene		ND	ug/L	12	4.8	EPA-8260B	, ND	A01	1	
,1,1-Trichloroethane		ND .	ug/L	12	2.8	EPA-8260B	ND	A01	1	
,1,2-Trichloroethane		ND	ug/L	12	4.0	EPA-8260B	ND	A01	. 1	
Frichloroethene		ND	ug/L	12	2.1	EPA-8260B	ND	A01	1	
Frichlorofluoromethane		ND	ug/L	12	3.2	EPA-8260B	ND	A01	. 1	
,2,3-Trichloropropane		ND	ug/L	25	6.0	EPA-8260B	ND	A01	. 1	
1,1,2-Trichloro-1,2,2-trifluoro	ethane	. ND	ug/L	12	3.8	EPA-8260B	ND	· A01	1	
1,2,4-Trimethylbenzene		15	ug/L	12	3.0	EPA-8260B	ND	A01	1	
1,3,5-Trimethylbenzene		. 4.0	ug/L	12	3.0	EPA-8260B	ND	J,A01	1	
Vinyl chloride		ND	ug/L	12	3.0	EPA-8260B	ND	.·. A01	1	
Total Xylenes	·	930	ug/L	25	9.0	EPA-8260B	ND	A01	1	
o- & m-Xylenes		630	ug/L	12	7.0	EPA-8260B	ND	A01	1	
o-Xylene		310	ug/L	12	2.0	EPA-8260B	ND	A01	1	
1,2-Dichloroethane-d4 (Sur	ogate)	108	%	75 - 125 (L	CL - UCL)	EPA-8260B			1	
Toluene-d8 (Surrogate)		98.9	%	80 - 120 (L	CL - UCL)	EPA-8260B	140		1	
4-Bromofluorobenzene (Sui	rogate)	87.2	%	80 - 120 (L	CL - UCL)	EPA-8260B			1	

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample II): 1518827-01	Client Sa	mple Name:	M & B, 8/3/201	5 10:05:00AM,	Kelsey Padi	lla	
Run#	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-8260B	08/10/15	08/11/15 09:40		MS-V13	25	BYH0763	

Report ID: 1000389266

Page 9 of 70

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)

BCL Sample ID:	1518827-01	Client Sampl	e Name:	M & B, 8/3/2015 10:05:00AM, Kelsey Padilla					
Constituent	. :	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Acenaphthene		24	ug/L	5.0	2.8	EPA-8270C-SIM	ŅD	A01	1
Acenaphthylene		2.6	ug/L	5.0	2.4	EPA-8270C-SIM	ND	J,A01	. 1
Anthracene		ND	ug/L	5.0	0.85	EPA-8270C-SIM	. ND	A01	1
Benzo[a]anthracene		5.3	ug/L:	5.0	1.3	EPA-8270C-SIM	ND	A01	1
Benzo[b]fluoranthene	,	5.2	ug/L	5.0	2.0	EPA-8270C-SIM	ND	A01	1
Benzo[k]fluoranthene		ND	ug/L	5.0	2.6	EPA-8270C-SIM	ND	A01	1
Benzo[a]pyrene		ND	ug/L	5.0	1.3	EPA-8270C-SIM	ND	A01	1
Benzo[g,h,i]perylene	,	ND	ug/L	5.0	2.2	EPA-8270C-SIM	ND	A01	1
Chrysene		7.4	ug/L	5.0	1.1	EPA-8270C-SIM	ND .	A01	1
Dibenzo[a,h]anthracene		ND	ug/L	5.0	2.2	EPA-8270C-SIM	ND.	A01	1
Fluoranthene		4.1	ug/L	5.0	0.60	EPA-8270C-SIM	ND	J,A01	1
Fluorene	v	38	ug/L	5.0	1.5	EPA-8270C-SIM	ND	A01	1
indeno[1,2,3-cd]pyrene		ND	ug/L	5.0	2.2	EPA-8270C-SIM	ND	A01	. 1
Naphthalene		28	ug/L	5.0	3.8	EPA-8270C-SIM	ND	A01	1
Phenanthrene		110	ug/L	5.0	1.1	EPA-8270C-SIM	ND	A01	1
Pyrene		9.1	ug/L	5.0	1.1	EPA-8270C-SIM	ND	A01	1
Nitrobenzene-d5 (Surroga	te)	0	%	40 - 130 (LC	CL - UCL)	EPA-8270C-SIM		A01,A17	1
2-Fluorobiphenyl (Surroga	te)	0	%	50 - 120 (L0	CL - UCL)	EPA-8270C-SIM		A01,A17	1
p-Terphenyl-d14 (Surroga	te)	0	%	40 - 130 (L0	CL - UCL)	EPA-8270C-SIM		A01,A17	1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C-SIM	08/07/15	08/12/15 09:10	MK1	MS-B4	50	BYH1030	

Report ID: 1000389266

Page 10 of 70

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1518827-01	Client Sampl	e Name:	M & B, 8/	M & B, 8/3/2015 10:05:00AM, Kelsey Padilla					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organic	cs (C4 - C12)	. 6600	ug/L	2500	440	EPA-8015B	. ND	A01	1	
a,a,a-Trifluorotoluene (FI	D Surrogate)	88.5	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1	

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	08/07/15	08/07/15 17:44	AKM	. GC-V9	50	BYH0553	,

Report ID: 1000389266

Page 11 of 70

08/26/2015 10:22 Reported:

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Total Petroleum Hydrocarbons

BCL Sample ID: 1518827	-01 Client Sampl	Client Sample Name:			05:00AM, Kelsey I			
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
TPH - Gasoline	140000	ug/L	50000	20000	EPA-8015B/FFP	ND	A01	1
TPH - Diesel (FFP)	150000	ug/L	20000	3400	EPA-8015B/FFP	ND	A01	-1
TPH - Motor Oil	250000	ug/L	50000	6600	EPA-8015B/FFP	ND	A01	1
Tetracosane (Surrogate)	0	%	37 - 134 (LC	L - UCL)	EPA-8015B/FFP		A01,A17	1.

	•		Run			:	QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/10/15	08/13/15 11:11	MWB	GC-13	100	BYH0882	

Report ID: 1000389266

Page 12 of 70

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar

Project Manager: Kelsey Padilla

Water Analysis (General Chemistry)

BCL Sample ID:	1518827-01	Client Sampl	e Name:	M & B, 8/3	3/2015 10:	05:00AM, Kelsey	/ Padilla		
Constituent		Result	Units	PQL	MDL	Method	MCL	Lab Quals	Run #
Total Calcium		83	mg/L	2.0	0.30	EPA-6010B		A07	1
Total Magnesium		340	mg/L	1.0	0.38	EPA-6010B		A07	1
Total Sodium		7100	mg/L	10	1.0	EPA-6010B		A07	11
Total Potassium		95	mg/L	20	2.6	EPA-6010B		A07	1
Bicarbonate Alkalinit	y as CaCO3	3000	mg/L	8.2	8.2	SM-2320B		,	2
Carbonate Alkalinity a	s CaCO3	ND	mg/L	8.2	8.2	SM-2320B			2
Hydroxide Alkalinity a	s CaCO3	ND	mg/L	8.2	8.2	SM-2320B	•		2
Total Alkalinity as Ca	iCO3	3000	mg/L	8.2	8.2	SM-2320B			2
Bromide	· · · · · · · · · · · · · · · · · · ·	91	mg/L	5.0	1.8	EPA-300.0		A07 .	3
Chloride		11000	mg/L	50	6.1	EPA-300.0	600	A07	4
Nitrate as NO3		ND	mg/L	22 .	3.9	EPA-300.0	45	A07	3
Sulfate		16	mg/L	50	5.0	EPA-300.0	500	J,A07	3
Total Dissolved Solid	ds @ 180 C	19000	mg/L	1000	1000	EPA-160.1	1500		5

			Run				QC	 	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	 	
1	EPA-6010B	08/06/15	08/07/15 13:17	ARD	PE-OP3	20	BYH0471 .	 	
2	SM-2320B,	08/05/15	08/05/15 20:31	RML	MET-1	2	BYH0297		
3	EPA-300.0	08/03/15	08/03/15 20:30	BMW	IC8	50	BYH0169		
. 4	EPA-300.0	08/03/15	08/03/15 23:48	BMW	IC8	100	BYH0169		
5	EPA-160.1	08/06/15	08/06/15 09:00	CAD	MANUAL	100	BYH0419		

Report ID: 1000389266

Page 13 of 70

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Metals Analysis

BCL Sample ID:	1518827-01	Client Sampl	lient Sample Name:		3/2015 10:0	05:00AM, Kelsey	Padilla	adilla		
Constituent		Result	Units	PQL	MDL	Method	MCL	Lab Quals	Run#	
lexavalent Chromium		480	ug/L	20	7.0	EPA-7196		A07,Z1	1	
otal Antimony		ND	ug/L	2000	170	EPA-6010B		A07 ,	2	
otal Arsenic		ND	ug/L	1000	160	EPA-6010B		A07	2	
otal Barium		4000	·ug/L	200	. 70	EPA-6010B		A07	2	
Total Beryllium		ND	ug/L	200	10	EPA-6010B	· · · · · · · · · · · · · · · · · · ·	A07.	. 2	
Total Boron		20	mg/L	2.0	0.26	EPA-6010B	,	A07	. 2,	
Total Cadmium		ND	ug/L	. 200	22	EPA-6010B	•	A07	. 2	
Total Chromium		ND ,	ug/L	200	22	EPA-6010B		A07	2	
Total Cobalt		ND	ug/L .	1000	26	EPA-6010B		A07 .	. 2	
Total Copper		. ND	ug/L	200	. 22	EPA-6010B	• .	A07	. 2	
Total Iron		12	mg/L	1.0	0.60	EPA-6010B		A07	2	
Total Lead		ND	ug/L	1000	80	EPA-6010B		·A07	2	
Total Lithium		3.1	mg/L	0.40	0.12	EPA-6010B		A07	2	
Total Manganese		0.11	mg/L	0.20	0.080	EPA-6010B		J,A07	2	
Total Mercury	•	0.038	ug/L	0.20	0.033	EPA-7470A		J	3	
Total Molybdenum		ND	. ug/L	1000	24	EPA-6010B	•	A07	2	
Total Nickel		ND	ug/L	200	40	EPA-6010B		A07	2	
Total Selenium		ND	ug/L	2000	300	EPA-6010B		A07	2	
Total Silver	1.1	ND .	ug/L	200	38	EPA-6010B		A07	, 2	
Total Strontium		20	mg/L	0.20	0.020	EPA-6010B		A07	2	
Total Thallium		, ND	ug/L	2000	480	EPA-6010B		A07	2	
Total Vanadium		ND	ug/L	. 200	44	EPA-6010B		A07	. 2	
Total Zinc	•	ND	, ug/L	1000	46	EPA-6010B	-	A07	2	
Total Recoverable Urar	nium .	ND ·	pCi/L	. 6.7	0.67	EPA-200.8	20	A07	4	
Total Recoverable Urar	nium	ND	ug/L	10	1.0	EPA-200.8	29.850746 2686567	A07	. 4	

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-7196	08/04/15	08/04/15 09:51	TDC	KONE-1	10	BYH0355	
2	EPA-6010B	08/06/15	08/07/15 13:17	ARD	PE-OP3	20	BYH0471	
3	EPA-7470A	08/07/15	08/10/15 09:52	MEV	CETAC1	1	BYH0541	
4	EPA-200.8	08/06/15	08/06/15 17:36	GPD	PE-EL3	10	BYH0461	

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	518827-02·	Client Sampl	e Name:	Theta, 8/3/					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Benzene		22	ug/L	12	2.1	EPA-8260B	ND	A01	1
Bromobenzene		ND ·	ug/L	12	3.2	EPA-8260B	ND	A01	1
Bromochloromethane		ND	ug/L	12	6.0	EPA-8260B	ND	A01	1
Bromodichloromethane		ND	ug/L	12	3.5	EPA-8260B	ND	A01	1
Bromoform		ND	ug/L	12	6.8	EPA-8260B	ND	A01	1
Bromomethane		ND.	ug/L	25	6.2	EPA-8260B	ND	A01	11
n-Butylbenzene		99	ug/L	12	2.8	EPA-8260B	ND .	A01	1
ec-Butylbenzene		150	ug/L	12	3.8	EPA-8260B	ND .	A01	1.
ert-Butylbenzene		ND	ug/L	12	3.2	EPA-8260B	ND .	A01	1
Carbon tetrachloride		ND	ug/L	12	4.5	EPA-8260B	ND	A01	1, :
Chlorobenzene	111111	. ND .	ug/L	12	2.3	EPA-8260B	ND	A01 、	1 .
Chloroethane		ND	ug/L	12	3.5	EPA-8260B	ND	A01	1
Chloroform	1,	ND	ug/L	12	3.0	EPA-8260B	ND	A01	1
Chloromethane		ND	ug/L	12	3.5	EPA-8260B	ND .	A01	1
2-Chlorotoluene		ND.	ug/L	12	5.0	EPA-8260B	ND .	A01	1
1-Chlorotoluene		ND	ug/L	12	3.8	EPA-8260B	ЙD	A01	1 .
Dibromochloromethane		. ND	ug/L	- 12	3.2	EPA-8260B	ND	. A01	1
1,2-Dibromo-3-chloropropa	ne	ND	ug/Ŀ .	25	11	EPA-8260B	ND	A01	1
1,2-Dibromoethane		ND	ug/L	12	4.0	EPA-8260B	ND	A01	1
Dibromomethane		ND	ug/L	12	6.0	EPA-8260B	ND	. A01	1
1,2-Dichlorobenzene		ND	ug/L	12	1.8	EPA-8260B	ND	A01	. 1
1,3-Dichlorobenzene		ND	ug/L	12	3.8	EPA-8260B	ND .	A01	· 1
1,4-Dichlorobenzene	•	ND	ug/L	, 12	. 1.6	EPA-8260B	ND	A01	1
Dichlorodifluoromethane		ND	ug/L	. 12	2.5	EPA-8260B	ND	A01	1
1,1-Dichloroethane	14 45 45 77 57	ND	ug/L	12	2.8	EPA-8260B	ND .	A01	1
1,2-Dichloroethane		ND	ug/L	12	4.2	EPA-8260B	ND	A01	1
1,1-Dichloroethene		ND	ug/L	12	4.5	EPA-8260B	ND	A01	1
cis-1,2-Dichloroethene		ŃD	ug/L	12	· 2.1	EPA-8260B	ND	A01 .	1
trans-1,2-Dichloroethene	* *****	ND	ug/L	12	3.8	EPA-8260B	ND	A01	1
1,2-Dichloropropane		ND	ug/L	12	3.2	EPA-8260B	ND	A01	1
1,3-Dichloropropane	·	ND	ug/L	12	2.2	EPA-8260B	ND	A01	. 1
2,2-Dichloropropane		· ND	ug/L	12	3.2	EPA-8260B	ND	A01	1
1,1-Dichloropropene	-	NP	ug/L	12	2.1	EPA-8260B	ND	A01	1

Report ID: 1000389266

Page 15 of 70

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

3CL Sample ID: 1518827-	02 Client Sampl	Client Sample Name:			Theta, 8/3/2015 10:35:00AM, Kelsey Padilla					
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
is-1,3-Dichloropropene	ND	ug/L	12	3.5	EPA-8260B	ND	A01	1		
ans-1,3-Dichloropropene	ND	ug/L	12	2.0	EPA-8260B	Ν̈́D	A01	1		
thylbenzene	880	ug/L	12	2.4	EPA-8260B	ND .	A01	1		
lexachiorobutadiene	ND	ug/L	· 12	4.2	EPA-8260B	ND	A01	1		
sopropylbenzene	150	ug/L	12	3.5	EPA-8260B	ND	A01	1		
o-Isopropyltoluene	320	ug/L	12	3.0	EPA-8260B	ND	A01	1 ·		
Methylene chloride	. ND	ug/L	25	12	EPA-8260B	ND	A01	1		
Methyl t-butyl ether	ND	ug/L	12	2.8	EPA-8260B	· ND	A01	1		
Naphthalene	ND	ug/L	12	9.0	EPA-8260B	ND	A01	1		
n-Propylbenzene	. 99	ug/L	12	2.8	EPA-8260B	ND	A01	1		
Styrene	. ND	ug/L	12	1.7	EPA-8260B	ND	A01	1		
1,1,1,2-Tetrachloroethane	ND	ug/L	12	4.5	EPA-8260B	. ND	A01	1		
1,1,2,2-Tetrachloroethane	ND	ug/L	12	4.2	EPA-8260B	ND	A01	. 1		
Tetrachloroethene	ND	ug/L	12	3.2	EPA-8260B	ND	A01	. 1		
Toluene	28	ug/L	12	2.3	EPA-8260B	ND	A01	1		
1,2,3-Trichlorobenzene	ND	ug/L	12	4.0	EPA-8260B	ND	A01	1		
1,2,4-Trichlorobenzene	ND	ug/L	12	4.8	EPA-8260B	ND	, A01	1 ·		
1,1,1-Trichloroethane	ND	ug/L	12	2.8	EPA-8260B	ND ·	A01	1		
1,1,2-Trichloroethane	ND	ug/L	12	4.0	EPA-8260B	ND	A01	1		
Trichloroethene	ND .	· ug/L	12	2.1	EPA-8260B	ND	A01	1		
Trichlorofluoromethane	ND	ug/L	12	3.2	EPA-8260B	ND	A01	. 1		
1,2,3-Trichloropropane	ND	ug/L	25	6.0	EPA-8260B	ND	A01	1		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ug/L	- 12	3.8	EPA-8260B	ND	A01	1		
1,2,4-Trimethylbenzene	-19	ug/L	12	3.0	EPA-8260B	ND	A01	1		
1,3,5-Trimethylbenzene	. ND	ug/L	12	3.0	EPA-8260B	ND	A01	. 1		
Vinyl chloride	. ND	ug/L	12	3.0	EPA-8260B	ND	A01	. 1		
Total Xylenes	4100	ug/L	25	9.0	EPA-8260B	ND	A01	1		
p- & m-Xylenes	2900	ug/L	12	7.0	EPA-8260B	ND	A01	1		
o-Xylene	. 1200	ug/L	12	2.0	EPA-8260B	ND	Ä01	1		
1,2-Dichloroethane-d4 (Surrogate)	109	%	75 - 125 (L	CL - UCL)	EPA-8260B	-		1		
Toluene-d8 (Surrogate)	103	% '	80 - 120 (L	CL - UCL)	EPA-8260B			· 1		
4-Bromofluorobenzene (Surrogate)	135	%	80 - 120 (L	CL - UCL)	EPA-8260B		A19,S09	1		

Report ID: 1000389266

Page 16 of 70

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

BCL S	ample ID	: 1518827-02	Client Sa	mple Name:	Theta, 8/3/201	5 10:35 [:] 00AM,	Kelsey Padil	la	
R	Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
	1	EPA-8260B	08/10/15	08/11/15 10:04	JPT	MS-V13	25	BYH0764	

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)

BCL Sample ID:	1518827-02	Client Sampl	le Name:	Theta, 8/3	3/2015 10:	35:00AM, Kelsey F	Padilla		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acenaphthene	,	120	ug/L	25	14	EPA-8270C-SIM	ND	A01	1
Acenaphthylene		84	ug/L	5.0	2.4	EPA-8270C-SIM	ND	A01	2
Anthracene		ND	ug/L	5.0	0.85	EPA-8270C-SIM	ND	A01	. 2
Benzo[a]anthracene		14	ug/L	5.0	1.3	EPA-8270C-SIM	ND	A01	2
Benzo[b]fluoranthene		29	ug/L	5.0	2.0	EPA-8270C-SIM	ND	A01	2
Benzo[k]fluoranthene		ND	ug/L	5.0	2.6	EPA-8270C-SIM	ŅD	A01	2
Benzo[a]pyrene		14	ug/L	5.0	1.3	EPA-8270C-SIM	ND	A01	2
Benzo[g,h,i]perylene		5.4	ug/L	5.0	2.2	EPA-8270C-SIM	ND	A01	2
Chrysene		52	ug/L	25	5.5	EPA-8270C-SIM	ND	A01	1
Dibenzo[a,h]anthracen	e	7.1	ug/L	5.0	2.2	EPA-8270C-SIM	ND	A01	2
Fluoranthene		5.8	ug/L	5.0	0.60	EPA-8270C-SIM	· ND	A01	2
Fluorene		510	ug/L	25	7.5	EPA-8270C-SIM	ND	A01	1
Indeno[1,2,3-cd]pyrene		ND	ug/L	5.0	. 2.2	EPA-8270C-SIM	ND	A01	2
Naphthalene		35	ug/L	25	19	EPA-8270C-SIM	ND	A01	. 1
Phenanthrene		1000	ug/L	50	11	EPA-8270C-SIM	ND	A01	3
Pyrene		50	ug/L	25	5.5	EPA-8270C-SIM	ND	A01	1
Nitrobenzene-d5 (Surro	gate)	0	%	40 - 130 (LC	CL - UCL)	EPA-8270C-SIM		A01,A17	2
2-Fluorobiphenyl (Surro	gate)	0	%	50 - 120 (LC	CL - UCL)	EPA-8270C-SIM		A01,A17	2
p-Terphenyl-d14 (Surro	gate)	0	%	40 - 130 (L0	CL - UCL)	EPA-8270C-SIM		A01,A17	2

		١	Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C-SIM	08/07/15	08/18/15 01:04	MK1	MS-B4	250	BYH1030	
2	EPA-8270C-SIM	08/07/15	08/12/15 09:36	MK1	MS-B4	50	BYH1030	
3	EPA-8270C-SIM	08/07/15	08/18/15 01:31	MK1	MS-B4	500	BYH1030	

Report ID: 1000389266

Page 18 of 70

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1518827-02	Client Sampl	Theta, 8/3	Theta, 8/3/2015 10:35:00AM, Kelsey Padilla						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#	
Gasoline Range Organ	nics (C4 - C12)	40000	ug/L	2500	440	EPA-8015B	ND	A01	1	
a,a,a-Trifluorotoluene (FID Surrogate)	89.8	%	70 - 130 (LC	L - UCL)	EPA-8015B			1 .	

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	08/07/15	08/07/15 18:04	AKM	GC-V9	50	BYH0553	

08/26/2015 10:22 Reported:

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Total Petroleum Hydrocarbons

BCL Sample ID:	1518827-02	Client Sampl	Theta, 8/3	/2015 10:					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Gasoline		350000	ug/L	100000	40000	EPA-8015B/FFP	ND	A01	1
TPH - Diesel (FFP)		230000	ųg/L	40000	6800	EPA-8015B/FFP	ND	A01	1
TPH - Motor Oil		270000	ug/L	100000	13000	EPA-8015B/FFP	ND	A01	1
Tetracosane (Surrogate)		.0	%	37 - 134 (LC	L - UCL)	EPA-8015B/FFP		A01,A17	1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/10/15	08/13/15 11:34	MWB	GC-13	200	BYH0882	

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Water Analysis (General Chemistry)

BCL Sample ID: 1518827-02	Client Sampl	e Name:	Theta, 8/3	/2015 10:	35:00AM, Kelsey	Padilla		
Constituent	Result	Units	PQL	MDL	Method	MCL	Lab Quals	Run #
Total Calcium	70	mg/L	2.0	0.30	EPA-6010B		A07	1
Total Magnesium	47	mg/L	1.0	0.38	EPA-6010B		A07	.1
Total Sodium	5800	mg/L	10	1.0	EPA-6010B		A07	1
Total Potassium	, 36	mg/L	20	2.6	EPA-6010B		A07	. 1
Bicarbonate Alkalinity as CaCO3	1900	mgi/L	8.2	8.2	SM-2320B		•	2
Carbonate Alkalinity as CaCO3	ND	mg/L	8.2	8.2	SM-2320B			2
Hydroxide Alkalinity as CaCO3	ND ·	. mg/L	8,2	8.2	SM-2320B			2.
Total Alkalinity as CaCO3	1900	mg/L	8.2	8.2	SM-2320B		# . <u></u>	2
Bromide	. 46	mg/L	5.0 '	1.8	EPA-300.0		A07	3
Chloride	7200	mg/L	25	3.0	EPA-300.0	600	A07	3
Nitrate as NO3	ND	mg/L	22	3.9	EPA-300.0	45	A07	3
Sulfate	. 16	mg/L	50	5.0	EPA-300.0	500	J,A07	3
Total Dissolved Solids @ 180 C	14000	mg/L	1000	1000	EPA-160.1	1500	1	. 4

			Run				QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	•		•
1	EPA-6010B	08/06/15	08/07/15 13:19	ARD	PE-OP3	20	BYH0471			
2	SM-2320B	08/05/15	08/05/15 20:44	RML	MET-1	2	BYH0297	,	,	
3	EPA-300.0	08/03/15	08/03/15 20:48	BMW	IC8	50	BYH0169			
4	EPA-160.1	08/06/15	08/06/15 09:00	CAD	MANUAL	100	BYH0419	:		

Report ID: 1000389266

Page 21 of 70

Reported: 0

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Metals Analysis

BCL Sample ID:	1518827-02	Client Sampl	e Name:	Theta, 8/3/2015 10:35:00AM, Kelsey Padilla							
Constituent		Result	Units	PQL	MDL	Method	MCL	Lab Quals	Run #		
Hexavalent Chromium		42	ug/L	100	35	EPA-7196		J,A07	1		
Total Antimony		ND	ug/L	2000	170	EPA-6010B		A07	2		
Total Arsenic		ND	ug/L	1000	160	EPA-6010B		A07	2		
Total Barium		1800	ug/L	200	70	EPA-6010B		A07	2		
Total Beryllium		ND	· ug/L	200	10	EPA-6010B		A07	2		
Total Boron		32	mg/L	2.0	0.26	EPA-6010B		A07	2		
Total Cadmium		ND	ug/L	200	22	EPA-6010B		A07	2		
Total Chromium		. ND	ug/L	200	22	EPA-6010B		A07′	2		
Total Cobalt		ND	ug/L	1000	26	EPA-6010B		A07	2		
Total Copper		40	ug/L	200	22	EPA-6010B		J,A07	2 .		
Total iron		23	mg/L	1.0	0.60	EPA-6010B		A07	2		
Total Lead		ND	ug/L.	1000	80	EPA-6010B		A07	2		
Total Lithium		2.0	mg/L	0.40	0.12	EPA-6010B		A07	2		
Total Manganese		0.62	mg/L	0.20	0.080	EPA-6010B		A07	2		
Total Mercury		ND	ug/L	0.20	0.033	EPA-7470A			3		
Total Molybdenum		75	ug/L	1000	24	EPA-6010B	<u>-</u>	J,A07	2		
Total Nickel		ND	ug/L	200,	40	EPA-6010B		A07	2		
Total,Selenium		ND	ug/L	2000	300	EPA-6010B		A07	2		
Total Silver		ND	ug/L.	200	38	EPA-6010B		A07	2		
Total Strontium		6.6	mg/L	0.20	0.020	EPA-6010B		A07	. 2		
Total Thallium		ND	ug/L	2000	480	EPA-6010B		A07	2		
Total Vanadium		ND	ug/L	200	44	EPA-6010B		A07	. 2		
Total Zinc		ND	ug/L	1000	. 46	EPA-6010B		A07	2		
Total Recoverable Uran	ium	ND	pCi/L	6.7	0.67	EPA-200.8	20	A07	. 4		
Total Recoverable Uran	ium	ND	ug/L	10	1.0	EPA-200.8	29,850746 2686567	A07	4		

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-7196	08/04/15	08/04/15 10:12	TDC	KONE-1	50	BYH0355	
2	EPA-6010B	08/06/15	08/07/15 13:19	ARD	PE-OP3	20	BYH0471	
3	EPA-7470A	. 08/07/15	08/10/15 09:54	MEV	CETAC1	1	BYH0541	
. 4	EPA-200.8	08/06/15	08/06/15 17:39	GPD	PE-EL3	10	BYH0461	

Report ID: 1000389266

Page 22 of 70

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYH0763						
Benzene	BYH0763-BLK1	ND	ug/L	0.50	0.083	
Bromobenzene	BYH0763-BLK1	ND	ug/L	0.50	0.13	
Bromochloromethane	BYH0763-BLK1	ND	ug/L	0.50	0.24	
Bromodichloromethane	BYH0763-BLK1	. ND	ug/L	0.50	0.14	
Bromoform	BYH0763-BLK1	ND	ug/L	0.50	0.27	
Bromomethane	BYH0763-BLK1	ND	ug/L	1.0	0.25	
n-Butylbenzene	BYH0763-BLK1	ND	ug/L	0.50	0.11	
sec-Butylbenzene	BYH0763-BLK1	ND	ug/L	0.50	0.15	
tert-Butylbenzene	BYH0763-BLK1	ND	ug/L	0.50	0.13	
Carbon tetrachloride	BYH0763-BLK1	ND .	ug/L	0.50	. 0.18	
Chlorobenzene	BYH0763-BLK1	ND	ug/L	0,50	0.093	
Chloroethane	BYH0763-BLK1	ND	ug/L	0.50	0.14	
Chloroform	BYH0763-BLK1	ND	ug/L	0.50	0.12	
Chloromethane	BYH0763-BLK1	ND	ug/L	0.50	0.14	•
2-Chlorotoluene	BYH0763-BLK1	ND	ug/L	0.50	0.20	
4-Chlorotoluene	BYH0763-BLK1	ND	ug/L	0.50	0.15	
Dibromochloromethane	BYH0763-BLK1	ND	ug/L	0.50	0.13	
1,2-Dibromo-3-chloropropane	BYH0763-BLK1	ND	ug/L	1.0	0.44	
1,2-Dibromoethane	BYH0763-BLK1	ND	ug/L	0.50	0.16	
Dibromomethane	BYH0763-BLK1	ND	ug/L	0.50	0.24	
1,2-Dichlorobenzene	BYH0763-BLK1	ND	ug/L	0.50	0.072	
1,3-Dichlorobenzene	BYH0763-BLK1	ND	ug/L	0.50	0.15	
1,4-Dichlorobenzene	BYH0763-BLK1	ND	ug/L	0.50	0.062	
Dichlorodifluoromethane	BYH0763-BLK1	ND	ug/L	0.50	¹² 0.099	·
1,1-Dichloroethane	BYH0763-BLK1	ND .	ug/L .	0.50	0.11	
1,2-Dichloroethane	BYH0763-BLK1	ND	ug/L	0.50	0.17	
1,1-Dichloroethene	BYH0763-BLK1	ND .	ug/L	0.50	0.18	
cis-1,2-Dichloroethene	BYH0763-BLK1	ND	· ug/L	0.50	0.085	
trans-1,2-Dichloroethene	BYH0763-BLK1	ND	ug/L	0.50	0.15	
1,2-Dichloropropane	BYH0763-BLK1	ND	ug/L	0.50	0.13	
1,3-Dichloropropane	BYH0763-BLK1	ND	uġ/L	0.50	0.086	
2,2-Dichloropropane	BYH0763-BLK1	ND .	ug/L	0.50	0.13	
1,1-Dichloropropene	BYH0763-BLK1	ND	ug/L	0.50	0.085	
cis-1,3-Dichloropropene	BYH0763-BLK1	ND	ug/L	0.50	0.14	

Report ID: 1000389266

Page 23 of 70

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYH0763						
rans-1,3-Dichloropropene	BYH0763-BLK1	ND	ug/L	0.50	. 0,079	
Ethylbenzene	BYH0763-BLK1	ND	ug/L	0.50	0.098	
- Hexachlorobutadiene	BYH0763-BLK1	ND	ug/L	0.50	0.17	
sopropylbenzene	BYH0763-BLK1	ND .	ug/L	0.50	0.14	
o-Isopropyltoluene	BYH0763-BLK1	ND .	ug/L	0.50	0.12	
flethylene chloride	BYH0763-BLK1	ND	. ug/L	1.0	0.48	
Nethyl t-butyl ether	BYH0763-BLK1	ND .	ug/L	0.50	0.11	
Naphthalene .	BYH0763-BLK1	ND	ug/L	0.50	0.36	
n-Propylbenzene	BYH0763-BLK1	ND	ug/L	0.50	0.11	
Styrene	BŸH0763-BLK1	ND .	.ug/L	0.50	0.068	
1,1,1,2-Tetrachloroethane	BYH0763-BLK1	ND	ug/L	0.50	0.18	
1,1,2,2-Tetrachloroethane	BYH0763-BLK1	ND	ug/L	0.50	0.17	
Tetrachioroethene	BYH0763-BLK1	ND .	ug/L	0.50	0.13	
Foluene	BYH0763-BLK1	ND	ug/L	0.50	0.093	•
i,2,3-Trichlorobenzene	BYH0763-BLK1	ND	ug/L	0,50	0.16	
,2,4-Trichlorobenzene	BYH0763-BLK1	ND	ug/L	0,50	0.19	
I,1,1-Trichloroethane	BYH0763-BLK1	ND .	ug/L	0.50	0.11	
1,1,2-Trichloroethane	BYH0763-BLK1	ND	ug/L	0.50	0.16	
Frichloroethene	BYH0763-BLK1	ND .	ug/L	0.50	0.085	
	BYH0763-BLK1	ND	ug/L	0.50	0.13	
1,2,3-Trichloropropane	BYH0763-BLK1	ND	ug/L	1.0	0.24	•
1,1,2-Trichloro-1,2;2-trifluoroethane	BYH0763-BLK1	ND	ug/L	0.50	0.15	
1,2,4-Trimethylbenzene	BYH0763-BLK1	ND	ug/L	0.50	0.12	
1,3,5-Trimethylbenzene	BYH0763-BLK1	ND	ug/L	0.50	0.12	
Vinyl chloride	BYH0763-BLK1	ND	ug/L	0.50	0.12	
Total Xylenes	BYH0763-BLK1	ND	ug/L	1.0	0.36	
p- & m-Xylenes	BYH0763-BLK1	ND	ug/L	0.50	0.28	
o-Xylene	BYH0763-BLK1	ND	ug/L	0.50	0.082	
1,2-Dichloroethane-d4 (Surrogate)	BYH0763-BLK1	99.2	%	75 - 12	25 (LCL - UCL)	
Toluene-d8 (Surrogate)	BYH0763-BLK1	95.9	%	80 - 12	20 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYH0763-BLK1	91.1	%	80 - 12	20 (LCL - UCL)	
QC Batch ID: BYH0764						
Benzene	BYH0764-BLK1	ND	ug/L	0.50	0.083	

Environmental Testing Laboratory Since

Enviro Tech Consultants, Inc. 5400 Rosedale Highway Bakersfield, CA 93308 Reported: 08/26/201

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYH0764	·			•		
Bromobenzene	BYH0764-BLK1	ND .	ug/L	0.50	0.13	·
Bromochloromethane	BYH0764-BLK1	ND	ug/L	0.50	0.24	
Bromodichloromethane	BYH0764-BLK1	ND	ug/L	0.50	0.14	• .
Bromoform	BYH0764-BLK1	ND .	ug/L	0.50	0.27	
Bromomethane	BYH0764-BLK1	ND	ug/L	1.0	0.25	
n-Butylbenzene	BYH0764-BLK1	ND	ug/L ·	0.50	0.11	
sec-Butylbenzene	BYH0764-BLK1	ND	ug/L	0.50	0.15	
tert-Butylbenzene	BYH0764-BLK1	ND	ug/L	0.50	0.13	
Carbon tetrachloride	BYH0764-BLK1	ND .	ug/L	0.50	0.18	
Chlorobenzene	BYH0764-BLK1	ND	ug/L	0.50	0.093	
Chloroethane	BYH0764-BLK1	ND ·	ug/L	0.50	0.14	
Chloroform	BYH0764-BLK1	ND	ug/L	0.50	0.12	
Chloromethane .	BYH0764-BLK1	ND	ug/L .	0.50	0.14	
2-Chlorotoluene	BYH0764-BLK1	ND	ug/L	. 0.50	0.20	
4-Chlorotoluene	BYH0764-BLK1	ND	ug/L	0.50	0.15	
Dibromochloromethane	BYH0764-BLK1	ND	ug/L	0.50	0.13	
1,2-Dibromo-3-chloropropane	BYH0764-BLK1	ND	ug/L	1.0	0.44	
1,2-Dibromoethane	BYH0764-BLK1	ND	ug/L	0.50	0.16	
Dibromomethane	BYH0764-BLK1	ND	ug/L	0.50	0.24	
1,2-Dichlorobenzene	BYH0764-BLK1	ND	ug/L '	0.50	0.072	
1,3-Dichlorobenzene	BYH0764-BLK1	ND	ug/L	0.50	0.15	
1,4-Dichlorobenzene	BYH0764-BLK1	ND	ug/L	0.50	0.062	
Dichlorodifluoromethane	BYH0764-BLK1	ND	ug/L	0.50	0.099	
1,1-Dichloroethane	BYH0764-BLK1	ND	ug/L	0.50	0.11	
1,2-Dichloroethane	BYH0764-BLK1	ND	ug/L	0,50	0.17	
1,1-Dichloroethene	BYH0764-BLK1	ND	ug/L	0.50	0.18	
cis-1,2-Dichloroethene	BYH0764-BLK1	ND	ug/L	0.50	0.085	
trans-1,2-Dichloroethene	BYH0764-BLK1	ND	ug/L	0.50	0.15	
1,2-Dichloropropane	BYH0764-BLK1	ND	ug/L	0.50	0.13	
1,3-Dichloropropane	BYH0764-BLK1	ND	ug/L	0.50	0.086	
2,2-Dichloropropane	BYH0764-BLK1	. ND	ug/L	0.50	0.13	
1,1-Dichloropropene	BYH0764-BLK1	ND	ug/L	0,50	0.085	
cis-1,3-Dichloropropene	BYH0764-BLK1	ND	ug/L	0.50	0.14	
trans-1,3-Dichloropropene	BYH0764-BLK1	ND	ug/L	0.50	0.079	•

Report ID: 1000389266

Page 25 of 70

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYH0764						
Ethylbenzene	BYH0764-BLK1	ND	ug/L	0.50	0.098	
Hexachlorobutadiene	BYH0764-BLK1	ND	ug/L	0.50	0.17	
Isopropylbenzene	BYH0764-BLK1	. ND	. ug/L	0.50	0.14	
p-Isopropyltoluene	BYH0764-BLK1	ND	ug/L	0.50	0,12	
Methylene chloride	BYH0764-BLK1	ND .	ug/L	1.0	0.48	
Methyl t-butyl ether	BYH0764-BLK1	ND	ug/L	0.50	0.11	
Naphthalene	BYH0764-BLK1	ŅD	ug/L	0.50	0.36	
n-Propylbenzene	BYH0764-BLK1	ND .	ug/L	0.50	0.11	
Styrene	BYH0764-BLK1	ND	ug/L	0.50	0.068	
1,1,1,2-Tetrachloroethane	BYH0764-BLK1	ND	· ug/L	0.50	0.18	. ,
1,1,2,2-Tetrachloroethane	BYH0764-BLK1	ND	ug/L	0.50	0.17	
Tetrachloroethene	BYH0764-BLK1	ND	ug/L	0.50	0.13	
Toluene	BYH0764-BLK1	ND	ug/L	0.50	0.093	•
1,2,3-Trichlorobenzene .	BYH0764-BLK1	ND	ug/L	0.50	0.16	
1,2,4-Trichlorobenzene	BYH0764-BLK1	ND ·	ug/L	0.50	0.19	
1,1,1-Trichloroethane	BYH0764-BLK1	ND .	ug/L	0,50	0.11	
1,1,2-Trichloroethane	BYH0764-BLK1	ND .	ug/L	0,50	0.16	•
Trichloroethene	BYH0764-BLK1	ND	ug/Ĺ	0.50	0.085	
Trichlorofluoromethane	BYH0764-BLK1	ИĎ	ug/L	0.50	0.13	
1,2,3-Trichloropropane	BYH0764-BLK1	ND	ug/L	1.0	0.24	
1,1,2-Trichloro-1,2,2-trifluoroethane	BYH0764-BLK1	ND	ug/L	0.50	0.15	
1,2,4-Trimethylbenzene	BYH0764-BLK1	ND	ug/L	0.50	0.12	
1,3,5-Trimethylbenzene	BYH0764-BLK1	ND	ug/L	0.50	0.12	
Vinyl chloride	BYH0764-BLK1	ND	ug/L	0.50	0.12	
Total Xylenes	BYH0764-BLK1	, ND	ug/L	1.0	0.36	
p- & m-Xylenes	BYH0764-BLK1	ND	ug/L	0.50	0.28	
o-Xylene	BYH0764-BLK1	ND	ug/L	0.50	0.082	
1,2-Dichloroethane-d4 (Surrogate)	BYH0764-BLK1	101	%	75 - 125 (LCL - UCL)		
Toluene-d8 (Surrogate)	BYH0764-BLK1	97.4	%	80 - 1	20 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYH0764-BLK1	86.5	%	80 - 1	20 (LCL - UCL)	

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

•								Control L	<u>imits</u>		
C	QC Sample ID	Type	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
Constituent	QC Sample ID	Type	Nesuit	Level	Omio	Recovery		recovery		Quuis	
QC Batch ID: BYH0763 Benzene	 BYH0763-BS1	LCS	24.740	25.000	ug/L	99.0		70 - 130			
Bromodichloromethane	BYH0763-BS1	LCS	25.850	25.000	ug/L	103		70 - 130		,	
						98.4		70 - 130		· · · · · · · ·	
Chlorobenzene	BYH0763-B\$1	LCS	24.610	25.000	ug/L						
Chioroethane	BYH0763-BS1	LCS	29.620	25,000	ug/L	118		70 - 130	•		
1,4-Dichlorobenzene	BYH0763-BS1	LCS	25.090	25.000	ug/L	100		70 - 130	 .		
1,1-Dichloroethane	BYH0763-BS1	LCS	25.910	25.000	ug/L	104		70 - 130			
1,1-Dichloroethene	BYH0763-BS1	LCS	28.330	25.000	ug/L	113		70 - 130			
Toluene	BYH0763-BS1	LCS	26.260	25.000	ug/L	105		70 - 130			
Trichloroethene	BYH0763-BS1	LCS .	27.000	25.000	ug/L	108		70 - 130		*	
1,2-Dichloroethane-d4 (Surrogate)	BYH0763-BS1	LCS	9,5300	10.000	ug/L	95.3		75 - 125			
Toluene-d8 (Surrogate)	BYH0763-BS1	LCS	10.020	10.000	· ug/L	100		80 - 120			
4-Bromofluorobenzene (Surrogate)	BYH0763-BS1	LCS	9.6000	10.000	ug/L	96.0		80 - 120			
QC Batch ID: BYH0764						***					
Benzene	BYH0764-BS1	LÇS	23.930	25,000	ug/L	95.7		70 - 130			
Bromodichloromethane	BYH0764-BS1	LCS	25.740	25.000	ug/L	103	•	70 - 130			
Chlorobenzene	BYH0764-BS1	LCS	24.580	25.000	ug/L	98.3		70 - 130	•		
Chloroethane	BYH0764-BS1	LCS	29.730	25.000	ug/L	119		70 - 130			
1,4-Dichlorobenzene	BYH0764-BS1	LCS	25.160	25.000	ug/L	101		70 - 130			
1,1-Dichloroethane	BYH0764-B\$1	LCS	24.300	25.000	uġ/L	97.2		70 - 130			
1,1-Dichloroethene	BYH0764-BS1	LCS	26.580	25.000	ug/L	106 😅		70 - 130			
Toluene	BYH0764-BS1	LCS	25.530	25.000	ug/L	102		70 - 130		•	
Trichloroethene	BYH0764-BS1	LCS	26.960	25.000	ug/L	108		70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	BYH0764-BS1	LCS	9,5400	10.000	ug/L	95.4		75 - 125			
Toluene-d8 (Surrogate)	BYH0764-BS1	LCS	10.280	10.000	ug/L	103		80 - 120			
4-Bromofluorobenzene (Surrogate)	BYH0764-BS1	LCS	9.4100	10.000	ug/L	94.1		80 - 120			
										-	

Report ID: 1000389266

Page 27 of 70

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

•									Cont	rol Limits	
	•	Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BYH0763	Use	d client samp	le: N			(_	•			
enzene	ب MS⋅	1516891-53	ND ·	25,200	25.000	ug/L		101		70 - 130	
	MSD	1516891-53	ND	24.650	25.000	ug/L	2.2	98.6	20	70 - 130	
Bromodichloromethane	MS	1516891-53	ND	26.540	25.000	ug/L		106		70 - 130	
, -, , , , , , , , , , , , , , , , , ,	MSD	1516891-53	ND	26.220	25.000	ug/L	1.2	105	20	70 - 130	
hlorobenzene	MS	1516891-53	ND	24.610	25.000	ug/L		98.4		70 - 130	
	MSD	1516891-53	ND	24.480	25.000	ug/L	0.5	97.9	20	70 - 130	
Chloroethane	MS	1516891-53	ND	30.020	25.000	ug/L		120		70 - 130	
, and a second s	MSD	1516891-53	ND	28.230	25.000°	ug/L	6.1	113	20	70 - 130	
,4-Dichlorobenzene	MS	1516891-53	ND	24.850	25.000	ug/L		99.4	-	70 - 130	
, , 5.5.11010501120110	MSD	1516891-53	ND	24.800	25,000	ug/L	0.2	99.2	20 .	70 - 130	
,1-Dichloroethane	MS	1516891-53	ND	25.940	25.000	ug/L		104		70 - 130	
, i-Diomoroculario	MSD	1516891-53	ND	25.660	25.000	ug/L	1.1	103	20	70 - 130	
I,1-Dichloroethene	MS	1516891-53	ND	28,680	25.000	ug/L		115		70 - 130	
	MSD	1516891-53	ND	28.500	25.000	ug/L	0.6	114	20	70 - 130	
Taluana		1516891-53	ND	27.100	25,000	ug/L		108		70 - 130	
oluene	MS MSD	1516891-53	ND	26.210	25,000	ug/L	3.3	105	20	70 - 130	
			 		25.000	ug/L		111		70 - 130	
Trichloroethene	MS MSD	1516891-53 1516891-53	ND ND	27.780 27.010	- 25.000	ug/∟ ug/L	2.8	108	20	70 - 130	
										75 - 125	
I,2-Dichloroethane-d4 (Surrogate)	MS	1516891-53	ND ND	9.2200 9.5000	10.000 10.000	ug/L ug/L	3.0	92.2 95.0		75 - 125 75 - 125	
·	MSD	1516891-53									
Toluene-d8 (Surrogate)	MS.	1516891-53	· ND	. 10.280	10.000	ug/L	2.4	103 101		80 - 120 80 - 120	
	MSD	1516891-53	. ND	10.070	10.000	ug/L	2.1				
4-Bromofluorobenzene (Surrogate)	MS	1516891-53	ND	9.4300	10.000	ug/L	4.0	94.3		80 - 120	
	MSD	1516891-53	ND	9.8400	10.000	ug/L	4.3	98.4		80 - 120	
QC Batch ID: BYH0764	Use	ed client sam	ple: N								
Benzene	<u></u> мs	1516891-54	ND	24.760	25.000	. ug/L		99.0		70 - 130	
•	MSD	1516891-54	ND	25.190	25.000	ug/L	1.7	101	20	70 - 130	
Bromodichloromethane	MS	1516891-54	ND	26.570	25.000	ug/L		106		70 - 130 `	
	MSD	1516891-54	ND	26.680	25.000	ug/L	0.4	107	20	70 - 130	
Chlorobenzene	MS	1516891-54	ND	24.650	25.000	ug/L		98.6		70 - 130	
. •	MSD	1516891-54	ND ·	24.470	25.000	ug/L	0.7	97.9	20	70 - 130	
Chloroethane	MS	1516891-54	ND	30.040	25.000	ug/L		120		70 - 130	"
•	MSD	1516891-54	ND	28.540	25.000	ug/L	5.1	114	20	70 - 130	
1,4-Dichlorobenzene	MS	1516891-54	ND	26.100	25.000	ug/L		104		70 - 130	
11. 5	MSD	1516891-54	ND	25.350	25.000	ug/L	2.9	101	20	70 - 130	
1,1-Dichloroethane	MS	1516891-54	ND	25.170	25.000	ug/L		101		70 - 130	
i, i-bioinorocularis	MSD	1516891-54	ND	25.770	25.000	ug/L	2.2	103	20	70 - 130	

Report ID: 1000389266

Page 28 of 70

Reported: (

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
Constituent	Туре	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals
QC Batch ID: BYH0764	Use	d client samp	ole: N.								
1,1-Dichloroethene	MS	1516891-54	ND	27.010	25.000	ug/L	*	108		70 - 130	
•	MSD	1516891-54	ND	28.320	25.000	ug/L	4.7	113	20	70 - 130	
Toluene	MS	1516891-54	ND	25.730	25.000	ug/L		103		70 - 130	
	MSD	1516891-54	ND	26.380	25.000	ug/L	2.5	106	20	70 - 130	
Trichloroethene	MS	1516891-54	ND	27.420	25.000	ug/L		110		70 - 130	
. •	MSD	1516891-54	ND	26.740	25.000	ug/L	2.5	107	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1516891-54	NĎ	9.8300	10.000	ug/L		98.3		75 - 125	
	MSD	1516891-54	ND	9.6600	10.000	ug/L	1.7	96.6		75 - 125	
Toluene-d8 (Surrogate)	MS	1516891-54	ND .	10.070	10.000	ug/L		101		80 - 120	,
	MSD ·	1516891-54	ND	9,980,0	10.000	ug/L	0.9	99.8		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS.	1516891-54	ND	9.8800	10.000	ug/L		98.8		80 - 120	
•	MSD	1516891-54	ND	9.3500	10.000	ug/L	5.5	93.5		80 - 120	

Report ID: 1000389266

Page 29 of 70

08/26/2015 10:22 Reported:

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYH1030			1		•	
Acenaphthene	BYH1030-BLK1	ND	ug/L	0.10	0.055	•
Acenaphthylene	BYH1030-BLK1	ND	ug/L	0.10	0.047	•
Anthracene	BYH1030-BLK1	ND	ug/L	0.10	0.017	,
Benzo[a]anthracene	BYH1030-BLK1	ND	ug/L	0.10	0.026	
Benzo[b]fluoranthene	BYH1030-BLK1	ND	ug/L	0.10	0.040	
Benzo[k]fluoranthene	BYH1030-BLK1	ND	ug/L	0.10	0.051	
Benzo[a]pyrene	BYH1030-BLK1	. ND	ug/L	0.10	0.026	
Benzo[g,h,i]perylene	BYH1030-BLK1	ND	ug/L	0.10	0.043	
Chrysene	BYH1030-BLK1	ND	ug/L	0.10	0.022	
Dibenzo[a,h]anthracene	BYH1030-BLK1	ND	ug/L	0.10	0.044	
Fluoranthene	BYH1030-BLK1	ND	ug/L	0.10	0.012	
Fluorene	BYH1030-BLK1	ND	ug/L	0.10	0.030	
indeno[1,2,3-cd]pyrene	BYH1030-BLK1	ND ·	ug/L	0.10	0.044	
Naphthalene	BYH1030-BLK1	ND	ug/L	0.10	0.077	•
Phenanthrene	BYH1030-BLK1	ND	ug/L	0.10	0.022	
Pyrene	BYH1030-BLK1	ND	.ug/L	0.10	0.022	
Nitrobenzene-d5 (Surrogate)	BYH1030-BLK1	81.4	%	40 - 13	30 (LCL - UĆL)	
2-Fluorobiphenyl (Surrogate)	BYH1030-BLK1	77.8	%	50 - 12	20 (LCL - UCL)	
p-Terphenyl-d14 (Surrogate)	BYH1030-BLK1	157	<u>'</u> %	40 - 13	30 (LCL - UCL)	S09

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 30 of 70 Report ID: 1000389266

08/26/2015 10:22 Reported:

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)

Quality Control Report - Laboratory Control Sample

								Control L	<u>imits</u>		
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: BYH1030											
Acenaphthene	BYH1030-BS1	LCS	0.95447	1.0000	ug/L	95.4		60 - 110			
Acenaphthylene	BYH1030-BS1	LCS	1.0915	1.0000	ug/L	109		60 - 120			
Anthracene	BYH1030-BS1	LCS	1.2833	1.0000	ug/L	128		60 - 130			
Benzo[a]anthracene	BYH1030-BS1	LCS	0.89920	1.0000	ug/L	89.9		60 - 130			
Benzo[b]fluoranthene	BYH1030-BS1	LCS	0.73772	1.0000	ug/L	73.8	•	50 - 130			
Benzo[k]fluoranthene	BYH1030-BS1	LCS	1.0571	1.0000	ug/L	106		60 - 120			
Benzo[a]pyrene	BYH1030-BS1	LCS	1.0327	1.0000	ug/L	103		60 - 120			
Benzo[g,h,i]perylene	BYH1030-BS1	LCS	0.91858	1.0000	ug/L	91.9		40 - 120			
Chrysene	BYH1030-BS1	LCS	0.82824	1.0000	ug/L	82.8		60 - 110			
Dibenzo[a,h]anthracene	BYH1030-BS1	LCS	0.66432	1.0000	ug/L	66.4		40 - 120			
Fluoranthene	BYH1030-B\$1	LCS	0.96108	1.0000	ug/L	96.1		60 - 120			
Fluorene	BYH1030-BS1	LCS	1.0172	1,0000	·ug/L	102		60 - 120			
Indeno[1,2,3-cd]pyrene	BYH1030-BS1	LCS	0.80023	1.0000	ug/L	80.0		40 - 130			
Naphthalene	BYH1030-BS1	LCS	0.90618	1.0000	ug/L	90.6		60 - 110			•
Phenanthrene	BYH1030-BS1	LCS	0.95832	1.0000	ug/L	95.8		60 - 120			*
Pyrene	BYH1030-BS1	LCS	2.0937	1.0000	ug/L	209		50 - 125		L01	
Nitrobenzene-d5 (Surrogate)	BYH1030-BS1	LCS	3.3240	4.0000	. ug/L	83.1		40 - 130			,
2-Fluorobiphenyl (Surrogate)	BYH1030-BS1	LCS	3.4567	4.0000	ug/L	86.4		50 - 120			
p-Terphenyl-d14 (Surrogate)	BYH1030-BS1	LCS	7.1208	4,0000	ug/L	178		40 - 130	,	S09	

08/26/2015 10:22 Reported:

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
							,				
QC Batch ID: BYH1030	Use	d client samp	le: N								
cenaphthene ·	MS	1516891-68	ND	0.73261	1.0000	ug/L		73.3		60 - 110	
· · · · · · · · · · · · · · · · · · ·	MSD	1516891-68	ND	0.87356	1.0000	ug/L	17.6	87.4	30	60 - 110	
cenaphthylene	MS	1516891-68	ND	0.81748	1.0000	ug/L		81.7		60 - 120 .	
	MSD	1516891-68	ND	0.97180	1.0000	ug/L	. 17.3	97.2	30	60 - 120	
nthracene	MS	1516891-68	ND	1.0014	1.0000	ug/L		100		60 - 130	
	MSD	1516891-68	ND -	1.1779	1.0000	ug/L	16.2	118	30	60 - 130	
enzo[a]anthracene	MS	1516891-68	ND	0.64157	1.0000	ug/L		64.2		60 - 120	
onzo[a]ananassno	MSD	1516891-68	ND	0.73110	1.0000	ug/L	13.0	73.1	30	60 - 120	
	MS	1516891-68	ND	0.59754	1.0000	ug/L		59.8		50 - 130	
lenzo[b]fluoranthene	MSD	1516891-68	. ND	0.61847	1.0000	ug/L	3.4	61.8	30	50 - 130	
		1516891-68	ND	0.82157	1.0000	ug/L	-	82.2		60 - 120	
enzo[k]fluoranthene	MS MSD	1516891-68	ND	1.0155	1.0000	ug/L	21.1	102	30	60 - 120	
					1.0000			84.5		60 - 120	
senzo[a]pyrene	MS	1516891-68	ND ND	0.84489 0.93215	1.0000	ug/L ug/L	9.8	93.2	30	60 - 120	
	MSD	1516891-68								40 - 120	
lenzo[g,h,i]perylene	MS	1516891-68	ND	0.69765	1.0000	ug/L	22.1	69.8 87.1	30	40 - 120 40 - 120	
	MSD	1516891-68	ND	0.87112	1.0000	ug/L	22.1		- 30		<u> </u>
Chrysene	MS	1516891-68	ND	0.65355	1.0000	ug/L		65.4		60 - 110	
	MSD	1516891-68	ND	0.75385	1.0000	ug/L	14.3	75.4	30	60 - 110	
Dibenzo[a,h]anthracene	MS	1516891-68	ND	0.53005	1.0000	ug/L		53.0		. 40 - 120	
	MSD	1516891-68	ND	0.62565	1.0000	ug/L	16.5	62.6	30	40 - 120	
Fluoranthene	MS	. 1516891-68	ND	0.72912	1.0000	ug/L		72.9		60 - 120	
	MSD	1516891-68	ND	0.83114	1.0000	· ug/L	13.1	83.1	30	60 - 120	
Fluorene	MS	1516891-68	ND	0.80415	1.0000	ug/L		80.4		60 - 120	
lacione	MSD	1516891-68	ND	0.98175	1.0000	ug/L	19.9	98.2	30	60 - 120	
ndenell 2.3 adim/rone	MS	1516891-68	. ND	0.61415	1.0000	ug/L	• • •	61.4	•	40 - 130	
ndeno[1,2,3-cd]pyrene	MSD	1516891-68	ND	0.73932	1.0000	ug/L	18.5	73.9	30	40 - 130	٠.
				0.70410	1.0000	ug/L		70.4		60 - 110	
Naphthalene	MS	1516891-68 1516891-68	ND ND	0.84442	1.0000	ug/L	18.1	84.4	30	60 - 110	
	MSD							71.2		60 - 120	
Phenanthrene	MS	1516891-68	ND	0.71158	1.0000	ug/L	18.1		30		
	MSD	1516891-68	ND	0.85360	1.0000	ug/L	10.1				
Pyrene	MS	1516891-68	ND	1.6614	1.0000	ug/L		166	20	50 - 125 50 - 125	Q03
	MSD	1516891-68	ND	2.1051	1.0000	ug/L	23.6		30	50 - 125	Q03
Nitrobenzene-d5 (Surrogate)	MS	1516891-68	, ND	2.6098	4.0000	ug/L		65.2		40 - 130	
	. MSD	1516891-68	ND	3.1383	4.0000	ug/L	18.4	78.5		40 - 130	
2-Fluorobiphenyl (Surrogate)	· MS	1516891-68	ND	2.5918	4.0000	ug/L		64.8		50 - 120	
=	MSD	1516891-68	ND	3.0786	4.0000	ug/L	17.2	77.0		50 - 120	

Page 32 of 70 Report ID: 1000389266

5400 Rosedale Highway Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar

Project Manager: Kelsey Padilla

Polynuclear Aromatic Hydrocarbons (EPA Method 8270C-SIM)

Quality Control Report - Precision & Accuracy

									Control Limits						
Constituent	Туре	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals				
QC Batch ID: BYH1030	Use	d client samp	ole: N												
p-Terphenyl-d14 (Surrogate)	_ MS	1516891-68	ND	5.7586	4.0000	ug/L		144		40 - 130	S09				
	MSD	1516891-68	ND	7.3720	4.0000	ug/L	24.6	184		40 - 130	S09				

Report ID: 1000389266

Page 33 of 70

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

		•				
Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYH0553		· · · · · · · · · · · · · · · · · · ·				
Gasoline Range Organics (C4 - C12)	BYH0553-BLK1	ND	ug/L	50	8.8	
a,a,a-Trifluorotoluene (FID Surrogate)	BYH0553-BLK1	93.8	%	70 - 13	0 (LCL - UCL)	

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

08/26/2015 10:22 Reported:

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control L	<u>imits</u>		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BYH0553											
Gasoline Range Organics (C4 - C12)	BYH0553-BS1	LCS	1147.3	1000.0	ug/L	115		85 - 115		•	
a,a,a-Trifluorotoluene (FID Surrogate)	BYH0553-BS1	LCS	34.498	40.000	ug/L	86.2		70 - 130			

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

									Control Limits				
		Source	Source		Spike			Percent	•	Percent	Lab		
Constituent	Type Sa	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals		
QC Batch ID: BYH0553	Use	d client samp	ole: N										
Gasoline Range Organics (C4 - C12)	_ MS	1516891-22	ND	1077.2	1000.0	ug/L		108		70 - 130			
	MSD	1516891-22	ND	976.13	1000.0	ug/L	9.8	97.6	20	70 - 130			
a,a,a-Trifluorotoluene (FID Surrogate)	MS.	1516891-22	ND	34.761	40.000	ug/L		86.9		70 - 130			
	MSD	1516891-22	ND	38.207	40.000	ug/L	9.4	95.5		70 - 130			

Report ID: 1000389266

Page 36 of 70

5400 Rosedale Highway Bakersfield, CA 93308 Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYH0882						
TPH - Gasoline	BYH0882-BLK1	ND	. ug/L	500	200	
TPH - Diesel (FFP)	BYH0882-BLK1	, ND	ug/L	200	. 34	
TPH - Motor Oil	BYH0882-BLK1	ND .	ug/L	500	66	
Tetracosane (Surrogate)	BYH0882-BLK1	84.5	%	37 - 13	4 (LCL - UCL)	

Report ID: 1000389266

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 37 of 70

5400 Rosedale Highway Bakersfield, CA 93308 Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

	•								Control Limits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BYH0882 TPH - Diesel (FFP)	BYH0882-BS1	LCS	1914.6	2500.0	ug/L	76.6	. ,	52 - 128			
Tetracosane (Surrogate)	BYH0882-BS1	LCS	88.165	101.87	ug/L	86.5		37 - 134			

5400 Rosedale Highway Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

									Control Limits				
Constituent	Туре	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals		
QC Batch ID: BYH0882	Use	d client samp	ole: N	 				· · · · · · · · · · · · · · · · · · ·		,			
TPH - Diesel (FFP)	MS	1516891-51	ND	1861.2	2500.0	· ug/L		74.4		50 - 127			
	MSD	1516891-51	ND ·	1952.1	2500.0	ug/L	4.8	78.1	24	50 - 127			
Tetracosane (Surrogate)	MS	1516891-51	ND	89.780	101.87	ug/L		88.1		37 - 134			
	MSD	1516891-51	ND	90.450	101.87	ug/L	0.7	88.8		37 - 134			

5400 Rosedale Highway Bakersfield, CA 93308 Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar

Project Manager: Kelsey Padilla

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	
QC Batch ID: BYH0169		<u> </u>					
Bromide	BYH0169-BLK1	ND	mg/L	0.10	0.035		
Chloride	BYH0169-BLK1	ND	mg/L	0.50	0.061		
Nitrate as NO3	BYH0169-BLK1	ND	mg/L	0.44	0.078		
Sulfate	BYH0169-BLK1	ND	mg/Ļ	1.0	0.10		,
QC Batch ID: BYH0297	·						,
Bicarbonate Alkalinity as CaCO3	BYH0297-BLK1	ND .	mg/L	4.1	4.1		
Carbonate Alkalinity as CaCO3	BYH0297-BLK1	ND	mg/L	4.1	4.1		
Hydroxide Alkalinity as CaCO3	BYH0297-BLK1	ND	mg/L	4.1	4.1		
Total Alkalinity as CaCO3	BYH0297-BLK1	ND	mg/L	4.1	4.1		
QC Batch ID: BYH0419							
Total Dissolved Solids @ 180 C	BYH0419-BLK1	. ND	mg/L	6.7	6.7		
QC Batch ID: BYH0471							
Total Calcium	BYH0471-BLK1	0.021257	mg/L	0.10	0.015	J .	
Total Magnesium	BYH0471-BLK1	0.029459	mg/L	0.050	0.019	J	
Total Sodium	BYH0471-BLK1	ND	mg/L	0.50	0.051		
Total Potassium	BYH0471-BLK1	. ND	mg/L	1.0	0.13		
							

08/26/2015 10:22 Reported:

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

				•			Control L	<u>imits</u>	Lab
QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Quals
BYH0169-BS1	LCS	2.0770	2.0000	mg/L	104		90 - 110		
BYH0169-BS1	LCS	51.563	50.000	mg/L	103		90 - 110		
BYH0169-BS1	LCS	22.448	22.134	mg/L	101		90 - 110		
BYH0169-BS1	LCS	102.02	100.00	mg/L	102		90 110		
BYH0297-BS3	LCS	104.82	100.00	mg/L	. 105		90 - 110		
									,
BYH0419-BS1	LCS	575.00	586.00	mg/L	98.1		90 - 110		
					111				
BYH0471-BS1	LCS	. 10.928	10.000	mg/L	109		85 - 115		
BYH0471-BS1	LCS	9.8502	10.000	mg/L	98.5		85 - 115		
BYH0471-BS1	LCS	10.150	10.000	mg/L	101		85 - 115		
BYH0471-BS1	LCS	9.9637	10.000	mg/L	99.6		85 - 115		
	BYH0169-BS1 BYH0169-BS1 BYH0169-BS1 BYH0169-BS1 BYH0297-BS3 BYH0419-BS1 BYH0471-BS1 BYH0471-BS1 BYH0471-BS1	BYH0169-BS1 LCS BYH0169-BS1 LCS BYH0169-BS1 LCS BYH0169-BS1 LCS BYH0297-BS3 LCS BYH0419-BS1 LCS BYH0471-BS1 LCS BYH0471-BS1 LCS BYH0471-BS1 LCS	BYH0169-BS1 LCS 2.0770 BYH0169-BS1 LCS 51.563 BYH0169-BS1 LCS 22.448 BYH0169-BS1 LCS 102.02 BYH0297-BS3 LCS 104.82 BYH0419-BS1 LCS 575.00 BYH0471-BS1 LCS 9.8502 BYH0471-BS1 LCS 9.8502 BYH0471-BS1 LCS 10.150	QC Sample ID Type Result Level BYH0169-BS1 LCS 2.0770 2.0000 BYH0169-BS1 LCS 51.563 50.000 BYH0169-BS1 LCS 22.448 22.134 BYH0169-BS1 LCS 102.02 100.00 BYH0297-BS3 LCS 104.82 100.00 BYH0419-BS1 LCS 575.00 586.00 BYH0471-BS1 LCS 10.928 10.000 BYH0471-BS1 LCS 9.8502 10.000 BYH0471-BS1 LCS 10.150 10.000	QC Sample ID Type Result Level Units BYH0169-BS1 LCS 2.0770 2.0000 mg/L BYH0169-BS1 LCS 51.563 50.000 mg/L BYH0169-BS1 LCS 22.448 22.134 mg/L BYH0169-BS1 LCS 102.02 100.00 mg/L BYH0297-BS3 LCS 104.82 100.00 mg/L BYH0471-BS1 LCS 575.00 586.00 mg/L BYH0471-BS1 LCS 10.928 10.000 mg/L BYH0471-BS1 LCS 9.8502 10.000 mg/L BYH0471-BS1 LCS 10.150 10.000 mg/L	QC Sample ID Type Result Level Units Recovery BYH0169-BS1 LCS 2.0770 2.0000 mg/L 104 BYH0169-BS1 LCS 51.563 50.000 mg/L 103 BYH0169-BS1 LCS 22.448 22.134 mg/L 101 BYH0169-BS1 LCS 102.02 100.00 mg/L 102 BYH0297-BS3 LCS 104.82 100.00 mg/L 105 BYH0419-BS1 LCS 575.00 586.00 mg/L 98.1 BYH0471-BS1 LCS 10.928 10.000 mg/L 109 BYH0471-BS1 LCS 9.8502 10.000 mg/L 98.5 BYH0471-BS1 LCS 10.150 10.000 mg/L 101	QC Sample ID Type Result Level Units Recovery RPD BYH0169-BS1 LCS 2.0770 2.0000 mg/L 104 BYH0169-BS1 LCS 51.563 50.000 mg/L 103 BYH0169-BS1 LCS 22.448 22.134 mg/L 101 BYH0169-BS1 LCS 102.02 100.00 mg/L 102 BYH0297-BS3 LCS 104.82 100.00 mg/L 98.1 BYH0471-BS1 LCS 575.00 586.00 mg/L 98.1 BYH0471-BS1 LCS 10.928 10.000 mg/L 109 BYH0471-BS1 LCS 9.8502 10.000 mg/L 98.5 BYH0471-BS1 LCS 10.150 10.000 mg/L 101	QC Sample ID Type Result Level Units Recovery RPD Recovery BYH0169-BS1 LCS 2.0770 2.0000 mg/L 104 90 - 110 BYH0169-BS1 LCS 51.563 50.000 mg/L 103 90 - 110 BYH0169-BS1 LCS 22.448 22.134 mg/L 101 90 - 110 BYH0169-BS1 LCS 102.02 100.00 mg/L 102 90 - 110 BYH0297-BS3 LCS 104.82 100.00 mg/L 105 90 - 110 BYH0471-BS1 LCS 575.00 586.00 mg/L 98.1 90 - 110 BYH0471-BS1 LCS 10.928 10.000 mg/L 109 85 - 115 BYH0471-BS1 LCS 9.8502 10.000 mg/L 98.5 85 - 115 BYH0471-BS1 LCS 10.150 10.000 mg/L 101 85 - 115	QC Sample ID Type Result Level Units Recovery RPD Recovery RPD BYH0169-BS1 LCS 2.0770 2.0000 mg/L 104 90 - 110 90 - 110 BYH0169-BS1 LCS 51.563 50.000 mg/L 103 90 - 110 90 - 110 BYH0169-BS1 LCS 102.02 100.00 mg/L 102 90 - 110 90 - 110 BYH0297-BS3 LCS 104.82 100.00 mg/L 105 90 - 110 90 - 110 BYH0471-BS1 LCS 575.00 586.00 mg/L 98.1 90 - 110 90 - 110 BYH0471-BS1 LCS 10.928 10.000 mg/L 109 85 - 115 BYH0471-BS1 LCS 9.8502 10.000 mg/L 101 85 - 115 BYH0471-BS1 LCS 10.150 10.000 mg/L 101 85 - 115

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

									<u>Cont</u>	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BYH0169	Use	d client samp	ole: N		<u> </u>						
Bromide	DUP	1518824-01	0.29100	0.29100		mg/L	0		10		
•	MS	1518824-01	0.29100	2.3697	2.0202	mg/L		103		80 - 120	
	MSD	1518824-01	0.29100	2.3768	2.0202	mg/L	0.3	103	10	80 - 120	
Chloride	DUP	1518824-01	32.768	32,666		mg/L	0.3		10		
	MS	1518824-01	32.768	88.081	50.505	mg/L		110		80 - 120	
	MSD	1518824-01	32.768	88.181	50.505	mg/L	0.1	110	10	80 - 120	
Nitrate as NO3	DUP	1518824-01	24.272	24.259		mg/L	0.1		10		
	MS	1518824-01	24.272	48.073	22.358	mg/L		106		80 - 120	
	MSD	1518824-01	24.272	48.194	22.358	mg/L.	0.3	107	10	80 - 120	
Sulfate	DUP	1518824-01	49.735	49.634		mg/L	0.2		10	•	•
	MS	1518824-01	49.735	161.37	101.01	mg/L		111		80 - 120	
	MSD	1518824-01	49.735	161.57	101.01	mg/L	0.1	111	10	80 - 120	
QC Batch ID: BYH0297	Use	ed client sam	ole: N								
Bicarbonate Alkalinity as CaCO3	DUP	1518795-03	621.61	624.66		mg/L	0.5		10		
Carbonate Alkalinity as CaCO3	DUP	1518795-03	ND	ND		mg/L			10		
Hydroxide Alkalinity as CaCO3	DUP	1518795-03	ND	ND		mg/L			10		
Total Alkalinity as CaCO3	DUP	1518795-03	621.61	624.66		mg/L	0.5		10		
QC Batch ID: BYH0419	Use	ed client sam	ple: N								
Total Dissolved Solids @ 180 C	DUP	1519002-01	693.33	699.99		mg/L	1.0		. 10		
QC Batch ID: BYH0471	Use	ed client sam	ple: N							••	
Total Calcium	DUP	1518931-03	63.036	62.066		mg/L	1.6		20		•
· ·	MS	1518931-03	63.036	70.140	10.000	mg/L		71.0		75 - 125	A03
·	MSD	1518931-03	63.036	73.487	10.000	mg/L	4.7	105	20	75 - 125	
Total Magnesium	DUP	1518931-03	28.416	25.785	-	mg/L	9.7		20		
- ·	MS	1518931-03	28.416	37.117	10.000	mg/L		87.0		75 - 125	`.
	MSD	1518931-03	28.416	38.978	10.000	mg/L	4.9	106	20	75 - 125	
Total Sodium	DUP	1518931-03	25.604	25.028		mg/L	2.3		20.	•	
	MS	1518931-03	25.604	35.139	10.000	mg/L		95.3		75 - 125	
	MSD	1518931-03	25.604	36.711	10.000	mg/L	4.4	111	20	75 - 125	
Total Potassium	DUP	1518931-03	4.1608	4.1145		mg/L	1.1		20		
	MS	1518931-03	4.1608	15.028	10.000	mg/L		109		75 - 125	
	MSD	1518931-03	4.1608	15,632	10.000	mg/L	3.9	115	20	75 - 125	

Report ID: 1000389266

Page 42 of 70

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Metals Analysis

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	. MDL	Lab Quals	
QC Batch ID: BYH0355	, , , , , , , , , , , , , , , , , , , 	:					
Hexavalent Chromium	BYH0355-BLK1	ND	ug/L	2.0	0.70		
QC Batch ID: BYH0461							
Total Recoverable Uranium	BYH0461-BLK1	ND	pCi/L ·	0.67	0.067		
Total Recoverable Uranium	BYH0461-BLK1	ND	ug/L	1.0	0.10	·	
QC Batch ID: BYH0471	<u> </u>						
Total Antimony	BYH0471-BLK1	ND ·	ug/L	100	8.5		
Total Arsenic	BYH0471-BLK1	ND	ug/L	50	7.8		
Total Barium	BYH0471-BLK1	ND	ug/L	10	3.5		
Total Beryllium	BYH0471-BLK1	ND ·	ug/L	10	0.50		
Total Boron	BYH0471-BLK1	0.031009	mg/L	0.10	0.013	j	
Total Cadmium	BYH0471-BLK1	ND	ug/L	10	1.1		
Total Chromium	BYH0471-BLK1	ND	ug/L	10	1.1		
Total Cobalt	. BYH0471-BLK1	ND	ug/L	50	1.3		
Total Copper	BYH0471-BLK1	· ND	ug/L	10	1.1		
Total Iron	BYH0471-BLK1	ND	mg/L	0.050	0.030		
Total Lead	BYH0471-BLK1	ND	ug/L	50	4.0	-	
Total Lithium	BYH0471-BLK1	ND	mg/L	0.020	0.0062	-	•
Total Manganese	BYH0471-BLK1	ND	mg/L	0.010	0.0040		
Total Molybdenum	BYH0471-BLK1	ND	ug/L	50	1.2		
Total Nickel	BYH0471-BLK1	ND	ug/L	10	2.0		
Total Selenium	BYH0471-BLK1	ND	ug/L	100	15	;	
Total Silver	BYH0471-BLK1	ND	ug/L	. 10	1.9		
Total Strontium	BYH0471-BLK1	ND .	mg/L	0.010	0.0010		
Total Thallium	BYH0471-BLK1	ND .	ug/L	100	24		
Total Vanadium	BYH0471-BLK1	ND	ug/L	10	2.2		
Total Zinc	BYH0471-BLK1	ND	ug/L	50	2.3		
QC Batch ID: BYH0541		,, as					
Total Mercury	BYH0541-BLK1	ND	. ug/L	0.20	0.033		

Report ID: 1000389266

Page 43 of 70

Enviro Tech Consultants, Inc. 5400 Rosedale Highway Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Metals Analysis

Quality Control Report - Laboratory Control Sample

	, , , , , , , , , , , , , , , , , , ,							Control L	<u>imits</u>		
			D14	Spike	Huita	Percent	RPD	Percent	RPD	Lab Quais	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	· ·	Recovery	KFD	Quais	
QC Batch ID: BYH0355			50.004	50.000		101		85 - 115			
Hexavalent Chromium	BYH0355-BS1	LCS	50.394	50.000	ug/L	101		03-110			
QC Batch ID: BYH0461	_										
Total Recoverable Uranium	BYH0461-BS1	LCS	28.195	26.800	pCi/L	105		85 - 115			
Total Recoverable Uranium	BYH0461-B\$1	LCS	42.082	40.000	ug/L	105		85 - 115			
QC Batch ID: BYH0471											**
Total Antimony	BYH0471-BS1	LCS	392.44	400.00	ug/L	98.1		85 - 115			***
Total Arsenic	BYH0471-BS1	LCS	187.40	200.00	ug/L	93.7		85 - 115			
Total Barium	BYH0471-BS1	LCS	408.86	400.00	ug/L .	102		85 - 115			
Total Beryllium	BYH0471-BS1	LCS	187.15	200.00	ug/L	93.6		85 - 115			
Total Boron	BYH0471-BS1	LCS	0.95459	1.0000	mg/L	95.5		85 - 115		• • •	
Total Cadmium	BYH0471-BS1	LCS	193.48	200.00	ug/L	96.7		85 - 115			
Total Chromium	BYH0471-BS1	LCS	194.03	200.00	ug/L	97.0		85 - 115			<u>.</u>
Total Cobalt	BYH0471-BS1	LCS	194.00	200.00	ug/L`	97.0		85 - 115			
Total Copper	BYH0471-BS1	LCS	360.03	400.00	ug/L	90.0		85 - 115			
Total Iron	BYH0471-BS1	LCS	1.0448	1.0000	· mg/L	104		85 - 115			
Total Lead	BYH0471-BS1	LCS	394.59	400.00	ug/L	98.6		85 - 115			
Total Lithium	BYH0471-BS1	LCS	0.20163	0.20000	mg/L	101	,	85 - 115			
Total Manganese	BYH0471-BS1	LCS	0.48473	0.50000	mg/L	96.9		85 - 115			
Total Molybdenum	BYH0471-BS1	LCS .	198.02	200.00	ug/L	99.0		85 - 115			·
Total Nickei	BYH0471-BS1	LCS	391.01	400.00	ug/L	97.8		85 - 115			
Total Selenium	BYH0471-BS1	LCS	199.63	200.00	ug/L	99.8		85 - 115			
Total Silver	BYH0471-BS1	LCS	91.312	100.00	ug/L	91.3		85 - 115			
Total Strontium	BYH0471-BS1	rcs	0.51324	0.50000	mg/L	103		85 - 115			
Total Thallium	BYH0471-BS1	LCS	407.00	400.00	ug/L	102		85 - 115	·		
Total Vanadium	BYH0471-BS1	LCS	196.37	200.00	ug/L	98.2		85 - 115			
Total Zinc	BYH0471-BS1	LCS	468.65	500.00	ug/L	93.7		85 - 115			
QC Batch ID: BYH0541	1		- ,				-				
Total Mercury	BYH0541-BS1	LCS	1.0175	1.0000	ug/L	102		85 - 115			•

Enviro Tech Consultants, Inc. 5400 Rosedale Highway Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Metals Analysis

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source	•	Spike			Percent		Percent	Lab
Constituent .	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BYH0355	Use	d client samp	le: N			N.S.					
exavalent Chromium	. DUP	1518832-01	ND	ND		ug/L			10		
	MS	1518832-01	ND	52.412	52.632	ug/L		99.6		85 - 115 ·	
	MSD	1518832-01	ND	51.061	52.632	ug/L	2.6	97.0	[.] 10	85 - 115	
QC Batch ID: BYH0461	Use	d client samp	ile: N								
otal Recoverable Uranium	D UP	1519038-01	1.2060	· 1.1926		pCi/L	1.1		20		
	MS	1519038-01	1.2060	33.081	26.800	pCi/L		119		70 - 130	
	MSD	1519038-01	1.2060	33.955	26.800	pCi/L	2.6	122	20	70 - 130	
otal Recoverable Uranium	DUP	1519038-01	1.8000	1.7800		ug/L	1.1		-20		
	MS	1519038-01	1.8000	49.375	40.000	ug/L		119		70 - 130	•
	MSD	1519038-01	1.8000	50.679	40.000	ug/L	2.6	122	20	70 - 130	
QC Batch ID: BYH0471	Use	ed client samp	ole: N								
Total Antimony	DUP	1518931-03	ND	ND		ug/L	*		20	•	
:	MS	1518931-03	ND.	430.97	400.00	ug/L		108		75 - 125	
• •	MSD	1518931-03	ND	447.36	400.00	ug/L	3.7	112	20	75 - 125	-
otal Arsenic	. DUP	1518931-03	ND	ND		ug/L			20		
	MS	1518931-03	ND .	202.90	200.00	ug/L		101		75 - 125	
	MSD	1518931-03	ND	224.92	200.00	ug/L	10.3	112	20	75 - 125	
Total Barium	DUP	1518931-03	155.62	151.25		ug/L	2.8		20		
:	MS	1518931-03	155.62	595,00	400.00	ug/L		110		75 - 125	
	MSD	1518931-03	155.62	628.92	400.00	ug/L	5.5	118	20	75 - 125	
Total Beryllium	DUP	1518931-03	ND	ND		ug/L			20		
	MS .	1518931-03	ND	209.22	200.00	ug/L		105		75 - 125	
	MSD	1518931-03	ND	220.14	200.00	ug/L	5.1	110	20	75 - 125	
Total Boron	DUP	1518931-03	0.067366	0.051226		mg/L	27.2		20		J,A02
•	MS	1518931-03	0.067366	1.0697	1.0000	mg/L		. 100		75 - 125	
•	MSD	1518931-03	0.067366	1.1223	1.0000	mg/L	4.8	105	20	75 - 125	
Total Cadmium	DUP	1518931-03	ND	ND .	1	ug/L			20		
	MS	1518931-03	ND	209.91	200.00	ug/L		105		75 - 125	,
	MSD	1518931-03	ND	224.44	200.00	ug/L ·	6.7	112	20	75 - 125	
Total Chromium	DUP	1518931-03	9.6430	9.6365		ug/L	0.1		20		J
	MS	1518931-03	9.6430	219.48	200.00	ug/L		105		75 - 125	
	MSD	1518931-03	9.6430	230,23	200.00	ug/L	4.8	110	20	75 - 125	
Total Cobalt	DUP	1518931-03	ND	ND		ug/L			20		
	MS	1518931-03	. ND	204.50	200.00	ug/L		102		75 - 125	
	MSD	1518931-03	ND	217.22	200.00	uġ/L	6.0	109	20	75 - 125	
Total Copper	DUP	1518931-03	ND	ND		ug/L			20		
	MS	1518931-03	ND	379.25	400.00	ug/L		94.8		75 - 125	
	MSD	1518931-03	ND	400.67	400.00	ug/L	5.5	100	20	75 - 125	

Report ID: 1000389266

Page 45 of 70

Enviro Tech Consultants, Inc. 5400 Rosedale Highway Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Metals Analysis

Quality Control Report - Precision & Accuracy

•				•					Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BYH0471	Use	d client samp	le: N			····					
otal Iron	DUP	1518931-03	ND '	ND		mg/L			20		
	MS	1518931-03	ND	1.1543	1.0000	mg/L		115		75 - 125	
	MSD	1518931-03	ND	1.2056	1.0000	mg/L	4.3	121	20	75 - 125	
Fotal Lead	DUP	1518931-03	4.2438	ND.		ug/L			20		
	MS	1518931-03	4.2438	426.00	400.00	ug/L		105		75 - 125	
	MSD	1518931-03	4.2438	452.34	400.00	ug/L	6.0	112	20	75 - 125	
Total Lithium	DUP	1518931-03	ND	0.0080212		mg/L			20		J
	MS	1518931-03	ND	0.23276	0.20000	mg/L		116		75 - 125	
	MSD	1518931-03	ND .	0.24353	0.20000	mg/L	4.5	122	20	75 - 125	
Total Manganese	DUP	1518931-03	ND	ND		mg/L			20		
	MS	1518931-03	ND	0.52938	0.50000	mg/L		106		75 - 125	
•	MSD	1518931-03	ND	0,55770	0.50000	mg/L	5.2	112	20	75 - 125	
Total Molybdenum	DUP	1518931-03	ND	ND.		ug/L			20		
•	MS	1518931-03	ND	214.25	200.00	ug/L		107		75 - 125	
	MSD	1518931-03	ND	229.71	200.00	ug/L	7.0	115	20	75 - 125	
Total Nickel	DUP	1518931-03	ND	ND		ug/L			20		
	MS	1518931-03	ND	413.66	400.00	ug/L ·		103		75 - 125	
	MSD	1518931-03	ND	432.40	400.00	ug/L	4.4	108	20	75 - 125	
Total Selenium	DUP	1518931-03	ND	, ND		ug/L		·	20		
	MS	1518931-03	ND	218.91	200.00	ug/L		109		75 - 125	
	MSD	1518931-03	ND	244.97	200,00	ug/L	11.2	122	. 20	75 - 125	
Total Silver	DUP	1518931-03	ND	ND		ug/L			20		
	MS	1518931-03	ND	101.89	100.00	ug/L		102		75 - 125	
	MSD	1518931-03	ND	106.48	100.00	ug/L	4.4	106	20	75 - 125	
Total Strontium	DUP	1518931-03	0.86513	0.84681		mg/L	2.1		20		
	MS	1518931-03	0.86513	1.3629	0.50000	mg/L		99.6		75 - 125	
	MSD	1518931-03	0.86513	1.4302	0.50000	mg/L	4.8	113	20	75 - 125	
Total Thallium	DUP	1518931-03	ND	ND		ug/L			20	**	
•	MS	1518931-03	ND	429.67	400.00	ug/L		107		75 - 125	
	MSD	1518931-03	ND	461.58	400.00	ug/L	7.2	115	20	75 - 125	
Total Vanadium	DUP	1518931-03	19.089	18.665		ug/L	2.2		20		
	MS	1518931-03	19.089	234.50	200.00	ug/L		108		75 - 125	
	MSD	1518931-03	19.089	245.66	200.00	ug/L	4.6	113	20	75 - 125	
Total Zinc	DUP	1518931-03	ND	. ND		ug/L		v	20		•
	MS	1518931-03	ND	492.08	500.00	ug/L		98.4		75 - 125	
	MSD	1518931-03	ND	517.62	500.00	ug/L	5.1	104	20	75125	

QC Batch ID: BYH0541

Used client sample: N

Enviro Tech Consultants, Inc.

5400 Rosedale Highway Bakersfield, CA 93308

Reported:

08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar Project Manager: Kelsey Padilla

Metals Analysis

Quality Control Report - Precision & Accuracy

<u>Con</u>								Cont	rol Limits		
Constituent	Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals
QC Batch ID: BYH0541	Use	d client samp	ole: N	<u>. </u>							
Total Mercury	DUP	1519108-01	0.052500	ND		ug/L			20		
	MS	1519108-01	0.052500	0.99000	1.0000	ug/L		93.8		70 - 130	•
	MSD	1519108-01	0.052500	0.93250	1.0000	ug/L	6.0	88.0	20	70 - 130	

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 1 of 9

BSK Associates Fresno 1414 Stanislaus St Fresno, CA93706 559-497-2888 (Main) 559-485-6935 (FAX)

A5H0422

8/17/2015

Invoice: A517160

Kerrie Vaughan BC Laboratories 4100 Atlas Court Bakersfield, CA 93308

RE: Report for A5H0422 General: Project Manager-Kerrie Vaughan

Dear Kerrie Vaughan,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 8/5/2015. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, Stephane Maupas, at (800) 877-8310 or (559) 497-2888 x212.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Kijuana Hartshorn, Project Coordinator

Accredited in Accordance with NELAP ORELAP #4021

A5H0422 FINAL 08172015 1154 Printed: 8/17/2015 QA-RP-0001-10 Final.rpt

www.BSKAssociates.com

Page 1 of 9

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 2 of 9

A5H0422

General: Project Manager-Kerrie Vaughan

Case Narrative

Project and Report Details

BC Laboratories Kerrie Vaughan

Project #: 1518827 Received: 8/05/201

Report To:

Received: 8/05/2015 - 17:23 **Report Due:** 8/17/2015

Sample Receipt Conditions

Cooler: Default Cooler

Temperature on Receipt °C: 4.6

6

Containers Intact COC/Labels Agree Received On Wet Ice

Packing Material - Bubble Wrap

Sample(s) were received in temperature range.

Initial receipt at BSK-FAL

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

MS1.0 Matrix spike recoveries exceed control limits.

Report Distribution

Recipient(s)

Report Format

CC

Invoice Details

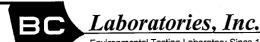
Project PO#: -

Invoice To: BC Laboratories

Invoice Attn: Kerrie Vaughan

Kerrie Vaughan

FINAL.RPT


A5H0422 FINAL 08172015 1154

Printed: 8/17/2015

QA-RP-0001-10 Final.rpt

www.'BSKAssociates.com

Page 2 of 9

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 3 of 9

A5H0422

General: Project Manager-Kerrie Vaughan

518827

Certificate of Analysis

Sample ID: A5H0422-01 Sampled By: Client

Sample Description: 1518827-01

Sample Date - Time: 08/03/15 - 10:05

Matrix: Water

Sample Type: Grab

BSK Associates Fresno Radiological

Analyte	Method	Result		Units	Batch	Prepared	Analyzed	Qual
Gross Alpha	SM 7110C	ND	•	pCi/L	A509057	08/11/15	08/12/15	
1.65 Sigma Uncertainty		0.110		±				
MDA95		1200		pCi/L				•

A5H0422 FINAL 08172015 1154 Printed: 8/17/2015

QA-RP-0001-10 Final.rpt

www.BSKAssociates.com

Page 3 of 9

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 4 of 9

A5H0422

General: Project Manager-Kerrie Vaughan

518827

Certificate of Analysis

Sample ID: A5H0422-02

Sampled By: Client Sample Description: 1518827-02 Sample Date - Time: 08/03/15 - 10:35

Matrix: Water

Sample Type: Grab

BSK Associates Fresno Radiological

Analyte	Method	Result	Units	Batch	Prepared	Analyzed Qual
Gross Alpha	SM 7110C	ND	pCi/L	A509057	08/11/15	08/12/15
1.65 Sigma Uncertainty		0.191	±			
MDA95		1200	pCi/L			

A5H0422 FINAL 08172015 1154

Printed: 8/17/2015

QA-RP-0001-10 Final.rpt

www.BSKAssociates.com

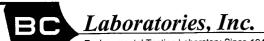
Page 4 of 9

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 5 of 9

A5H0422

General: Project Manager-Kerrie Vaughan

BSK Associates Fresno **Radiological Quality Control Report**


Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
Entertaine de la companya de la comp		SM 71	10C - Q	uality Co	ntrol		·	tet mailutermoptudes um	and the first state of the stat		
Batch: A509057										Prepare	d: 8/11/2015
Prep Method: EPA 00-02											nalyst: SAB
Blank (A509057-BLK1)											
1.65 Sigma Uncertainty	ND		±							08/12/15	
Gross Alpha	ND	3	pCi/L							08/12/15	
MDA95	ND	0.00	pCi/L							08/12/15	
Blank Spike (A509057-BS1)											
Gross Alpha	27.3	3	pCi/L	30		91	80-120			08/12/15	
Blank Spike Dup (A509057-BSD1)											
Gross Alpha	26.6	. 3	pCi/L	30		89	80-120	3	50	08/12/15	
Matrix Spike (A509057-MS1), Source	e: A5H0189-01									,	
Gross Alpha	56.2	3	pCi/L	120	ND	45	70-130			08/12/15	MS1.0 Low
Matrix Spike (A509057-MS2), Source	e: A5H0288-01										
Gross Alpha	89.9	3	pCi/L	120	ND	75	70-130			08/12/15	
Matrix Spike Dup (A509057-MSD1),	Source: A5H0189-01										
Gross Alpha	69.5	3	pCi/L	120	ND	56	70-130	21	50	08/12/15	MS1.0 Low
Matrix Spike Dup (A509057-MSD2),	Source: A5H0288-01										
Gross Alpha	88.9	3	pCi/L	120	ND ·	74	70-130	1	50	08/12/15	

A5H0422 FINAL 08172015	1154
Printed: 8/17/2015	

QA-RP-0001-10 Final.rpt

www.BSKAssociates.com

Page 5 of 9

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 6 of 9

A5H0422

General: Project Manager-Kerrie Vaughan

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 21708 Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm) Milligrams/Kilogram (ppm) Micrograms/Liter (ppb)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:		RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
µg/L:		ND:	None Detected at RL	CFU:	Colony Forming Unit
µg/Kg:	Micrograms/Kilogram (ppb) Percent Recovered (surrogates)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%;		RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAC program for the following parameters:

NA

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

•••••	-,		-
Fresno			
State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAC	4021
EPA - UCMR3	CA00079	State of Washington	C997-15
Sacramento			
State of California - ELAP	2435		
Vancouver			
State of Oregon - NELAC	WA100008	State of Washington	C824-14a

A5H0422 FINAL 08172015 1154 Printed: 8/17/2015

Printed: 8/17/2015

QA-RP-0001-10 Final.rpt

www.BSKAssociates.com

Page 6 of 9

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 7 of 9

A5H0422

BCLab4911

08052015

Due Date: 8/17/2015

BC Laboratories

Page 7 of 9

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 8 of 9

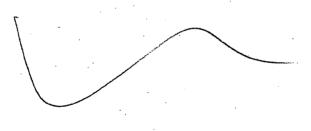
4.4

SUBCONTRACT ORDER BC Laboratories 1518827

A5H0422 BCLab4911 08/05/2015

SENDING LABORATORY:

BC Laboratories 4100 Atlas Court Bakersfield, CA 93308 Phone: 661-327-4911 FAX: 661-327-1918


Containers supplied:

Project Manager: Kerrie Vaughan

RECEIVING LABORATORY:

BSK Analytical Labs 1414 Stanislaus Street Fresno, CA 93706 Phone: (800) 877-8310 FAX: (559) 485-6935 BSKSA

Comments **Expires** Due **Analysis** Sampled: 08/03/15 10:05 Sample ID: 1518827-01 Water Analyze water phase only results neede 08/17/15 17:00 01/31/16 10:05 EPA 900.0 Gross Alpha by 8/17/2015. Containers supplied: Sampled: 08/03/15 10:35 Sample ID: 1518827-02 Analyze water phase only results neede 01/31/16 10:35 EPA 900.0 Gross Alpha 08/17/15 17:00 by 8/17/2015.

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_BSKSA.pdf Page 9 of 9 08/05/2015 A5H0422 BCLab4911 BSK Associates SR-FL-0002-14 Sample Integrity Label BSK Bottles: Yes No Page Were correct containers and preservatives Was temperature within range? No NA Chemistry ≤ 6°C Micro < 10°C received for the tests requested? Were there bubbles in the VOA vials? If samples were taken today, is there evidence No (NA -No (Volatiles Only) that chilling has begun? Was a sufficient amount of sample received? No Did all bottles arrive unbroken and intact? Do samples have a hold time <72 hours? Did all bottle labels agree with COC? No Was PM notified of discrepancies? Was sodium thiosulfate added to CN sample(s) Yes No Yes No Bv/Time: until chlorine was no longer present? 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) pH 9.3-9.7 NH4OH(NH4)2SO4 HNO₃ (P) Red Ca CI, pH >10 NaOH (P) NaOH + ZnAc (P) Dissolved Oxygen 300ml (g) HCI (AG)^{Lt. Blue Label} O&G, Diesel Na₂S₂O₃ 1 Liter (Brown P) 549 Na₂S₂O₃ (CG) Blue Label Na-S₂O + MCAA/GGI^B NH₄Cl (AG)^{Purple Label} HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 Buffer pH 4+CG) 5 None (CG) H₃PO₄ (CG) Other: Low Level Hg / Metals Double Baggie Clear Glass Jar: 250 / 500 / 1 Liter Soil Tube Brass / Steel / Plastic Tedlar Bag Plastic Bag Date/Time/Initials Container Preservative Date/Time/Initials Preservative Split SP SP SP @ 17:59 Labeled by: 144 RUSH Paged by: Labels checked by: 7/H Page 9 of 9

Report ID: 1000389266

Page 56 of 70

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 1 of 13

Pace Analytical Services, inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

August 25, 2015

Ms. Kerrie Vaughan BC Laboratories 4100 Atlas Ct. Bakersfield, CA 93308

RE: Project: 1518827

Pace Project No.: 30156088

Dear Ms. Vaughan:

Enclosed are the analytical results for sample(s) received by the laboratory on August 12, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carin a Ferris

Carin Ferris
carin.ferris@pacelabs.com
Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 1 of 13

Report ID: 1000389266

Page 57 of 70

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 2 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project:

1518827

Pace Project No.: 30156088

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 I-A-B DOD-ELAP Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification Colorado Certification #: PH-0694
Connecticut Certification #: PH-0694
Delaware Certification
Fiorida/TNI Certification #: E87683
Georgia Certification #: C040
Guam Certification
Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133
Louisiana DHH/TNI Certification #: LA140008
Louisiana DEQ/TNI Certification #: 4086
Maine Certification #: PA00091 Maryland Certification #: 308
Massachusetts Certification #: M-PA1457
Michigan/PADEP Certification
Missouri Certification #: 235

Montana Certification #: Cert 0082 Montana Certification #: Cert 0082
Nebraska Certification #: NE-05-29-14
Nevada Certification #: PA014572015-1
New Hampshire/TNI Certification #: 2976
New Jersey/TNI Certification #: PA01457
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Oregon/ INI Certification #: PA2U0U29 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification #: TN2867 Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5 USDA Soil Permit #: P330-14-00213
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198 Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C Wisconsin Certification

Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 13

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 3 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE SUMMARY

Project: 1518827 30156088 Pace Project No.:

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30156088001	1518827-01	Water	08/03/15 10:05	08/12/15 10:10
30156088002	1518827-02	Water	08/03/15 10:35	08/12/15 10:10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 13

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000389266

Page 59 of 70

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 4 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE ANALYTE COUNT

Project:

1518827

Pace Project No.: 301,56088

Lab ID	Sample ID	:			Method	Analysts	Analytes Reported
30156088001	1518827-01				EPA 903.1	JC2	1
					EPA 904.0	JFM.	1
30156088002	1518827-02		•		EPA 903.1	JC2	1
	•		• • • • • • • • • • • • • • • • • • • •	•	EPA 904.0	JLW	1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 4 of 13

Report ID: 1000389266

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 5 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project:

1518827

Pace Project No.:

30156088

Method:

EPA 903.1

Description: 903.1 Radium 226 BC Laboratories

Client:

Date:

August 25, 2015

General Information:

2 samples were analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

The samples were analyzed within the method required hold times with any exceptions noted below.

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 5 of 13

Report ID: 1000389266

Page 61 of 70

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 6 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project:

1518827

Pace Project No.:

30156088

Method: Description: 904.0 Radium 228

EPA 904.0

Client:

BC Laboratories

Date:

August 25, 2015

General Information:

2 samples were analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, ` without the written consent of Pace Analytical Services, Inc..

Page 6 of 13

Report ID: 1000389266

Page 62 of 70

Subcontract Report for 1518827 PDF File Name: WO 1518827 SUB_PACEA.pdf Page 7 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

1518827

Pace Project No.: 30156088 Sample: 1518827-01

Parameters

Parameters

Lab ID: 30156088001

Collected: 08/03/15 10:05 Received: 08/12/15 10:10 Matrix: Water

PWS:

Site ID:

Sample Type: Act ± Unc (MDC) Carr Trac

Units

CAS No.

Method

24.5 ± 14.5 (17.1) C:NA T:87%

pCi/L

Qual 08/24/15 09:24 13982-63-3

Radium-226 Radium-228 EPA 903.1 EPA 904.0

8.27 ± 8.21 (17.0) C:84% T:65%

pCi/L

08/24/15 18:34 15262-20-1

Sample: 1518827-02

Lab ID: 30156088002

Sample Type:

Collected: 08/03/15 10:35 Received: 08/12/15 10:10 Matrix: Water

Analyzed

Analyzed

Qual

PWS:

Site ID: Method

Act ± Unc (MDC) Carr Trac

Units

CAS No.

Radium-226

Radium-228

EPA 903.1

EPA 904.0

12.3 ± 9.43 (11.9) C:NA T:89% 9.04 ± 8.05 (16.4) C:79% T:72% pCi/L pCi/L

08/24/15 09:29 13982-63-3 08/24/15 18:35 15262-20-1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 7 of 13

Report ID: 1000389266

Page 63 of 70

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 8 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project:

1518827

Pace Project No.:

30156088

QC Batch:

RADC/25656

Analysis Method:

EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description:

903.1 Radium-226

Associated Lab Samples: 30156088001, 30156088002

METHOD BLANK: 938614

Associated Lab Samples: 30156088001, 30156088002

Matrix: Water

Parameter

Act ± Unc (MDC) Carr Trac

Analyzed

Qualifiers

Radium-226

0.0731 ± 0.379 (0.787) C:NA T:90%

Units pCi/L

08/24/15 09:18

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 8 of 13

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000389266

Page 64 of 70

Subcontract Report for 1518827 PDF File Name: WO 1518827 SUB PACEA.pdf Page 9 of 13

Pace Analytical Services, inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL - RADIOCHEMISTRY

Project:

1518827

Pace Project No.:

30156088

QC Batch:

Radium-228

RADC/25659

Analysis Method:

EPA 904.0

QC Batch Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Associated Lab Samples: 30156088001, 30156088002

METHOD BLANK: 938617

Matrix: Water

Associated Lab Samples: 30156088001, 30156088002

Units

Analyzed

Qualifiers

Act ± Unc (MDC) Carr Trac 0.381 ± 0.325 (0.654) C:86% T:91%

pCi/L

08/24/15 18:34

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 9 of 13

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 10 of 13

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project:

1518827

Pace Project No.: 30156088

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 10 of 13

Date: 08/25/2015 03:41 PM

Report ID: 1000389266

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 66 of 70

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 11 of 13

SUBCONTRACT ORDER **BC Laboratories** 1518827

SENDING LABORATORY:

BC Laboratories 4100 Atlas Court Bakersfield, CA 93308 Phone: 661-327-4911 FAX: 661-327-1918

Project Manager: Kerrie Vaughan

RECEIVING LABORATORY:

PACEA

PACE Analytical 1638 Roseytown Road, Ste 2,3 &4 Greensburg, PA 15601

Phone: (724) 850-5600 FAX: (724) 850-5601

30156088

Analysis		Due	Expires	Comments			
Sample ID: 1518827-01	Water	Sampled:	08/03/15 10:05	100			
EPA 903.1 Radium 226	·	08/17/15 17:00	01/31/16 10:05	Analyze water phase only results neede by 8/17/2015.			
EPA 904.0 Radium 228		08/17/15 17:00	01/31/16 10:05	Analyze water phase only results neede by 8/17/2015.			
Containers supplied:	16 Fert	F (Red)					
Sample ID: 1518827-02	Water	Sampled:	08/03/15 10:35	252			
EPA 903.1 Radium 226		08/17/15 17:00	01/31/16 10:35	Analyze water phase only results neede by 8/17/2015.			
EPA 904.0 Radium 228		08/17/15 17:00	01/31/16 10:35	Analyze water phase only results needed by 8/17/2015.			
Containers supplied:	C C	•					

Received By Date Released By Page 11 of 13 Page 1 of 1

PACEA

Subcontract Report for 1518827	PDF File Name: W	O_1518827_S	UB_PACEA.pdf	Page 12 of 13

			J
Sam	ple Condition U	oon Receipt , W	•
		D -11-	_# _30156088
Pace Analytical Client Name:	BC	/ Project:	#
<i>(</i>			
courler:	4(1) 1	- Piologi	cai Tissue is Frozen: Yes No
Custody Seal on Cooler/Box Present:	no Seals in	act: yes no Blologi	Cal Hasde ta (1020m 100 110
	None O		
Thermometer Used NA Type	of Ice: Wet Blue	None Samples on Ice, cool	Date and initials of person /
Cooler Temp.: Observed Temp.:°C Co	rrection Factor:	_°C Final Temp;°C	examining contents: 12/15
Temp should be above freezing to 6°C		mments:	
Chain of Custody Present:	DYes □No □N/A 1		
Chain of Custody Filled Out:	Tares ONO ONA 2		
Chain of Custody Relinquished:	ZYes □No □N/A 3		
Sampler Name & Signature on COC:	□Yes □N/A 4		
Samples Arrived within Hold Time:	DY68 ONO ONIA		
Short Hold Time Analysis (<72hr):	□Yes □N/A (
Rush Turn Around Time Requested:	☑Yes □No □N/A	La sural mana	
Sufficient Volume:	□xes □No □N/A	Lan volume	
Correct Containers Used:	ZYOS DNO DNA	•	
-Pace Containers Used:	□Yes □N/A		•
Containers Intact:	Ziyes ONO ON/A		
Filtered volume received for Dissolved tests	□Yes □No ☑NIA		man ala halles
Sample Labels match COC:	□Yes □N6 □N/A	2NO date time in	sample bottles
-includes date/time/ID/Analysis Matrix:		1100	a to partie salmode)
All containers needing preservation have been chacked.	ZYes Ong ON/A	3. ACICLED SIMILARIO	3 to each sample
All containers needing preservation are found to be in compilance with EPA recommendation.	□Yes □No □N/A	offle PHCZMEM	
exceptions; VOA, coliform, TOC, O&G, Phenois	□Yes □No	Ital when Lot # of added preservative	DL15-0641
Samples checked for dechlorination:	□Yes □No ØNIA	4.	
Headspace in VOA Vials (>6mm):	☐Yes ☐No ☐NIA		
Trip Blank Present:	□Yes □No ☑NIA	6. ·	
Trip Blank Custody Seals Present	□Yes □No ØN/A	•	
Pace Trip Blank Lot # (if purchased):	<u> </u>		
Client Notification/ Resolution:		Field Data	Required? Y / N
Person Contacted:	Date/	lme:	*
Comments/ Resolution:			
	·		
- $ -$	00 300	O A A Date	»: 8/WKS
Project Manager Review:	\sim	/ 1/V 1	

Note: Whenever there is a discrepancy affecting North Carolina complian (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

J:\QAQC\Master\Document Management\\Sample Mgt\SCURF\FALLC003-09 SCUR Front 3\Ragis2025of 13

Subcontract Report for 1518827 PDF File Name: WO_1518827_SUB_PACEA.pdf Page 13 of 13

										1	· · ·	
Офрег					<u> </u>		,			ļ	1	
Other												
sold Z												
Cubitainer (500 ml / AL)					. !							
Zadchem Nalgene (1/2 gal. 1 gal.L)												
Radchem Walgene (125 / 250 / 500	- .	_		,								ı
Wipes I swipel smeath filter												
in OSt) aireiceil			·									
(im 008) abilius					*							
(lm 05%) abinsyO									,	İ		
(Im 0E Im 0b) AOV										ľ		
(11) मना			· niiinan					<u> </u>		1		
O & G (1L)			******				<u> </u>					
· N					1			-	-		-	
Total Metals Y bevreserved Metals preserved	7 da 20									1		
(S5) XOT	7 4 1				ļ.,						1	
TOC (40 ml / 250 ml)					ļ	-		1				
Phenolics (250 ml)						-	-		: "		-	
(005 \ 500) ineitiu/i					-	-	-					
	;			<u> </u>		1		1				
(11) (12) (12)			<u> </u>		-	-	-	-	-	-	-	
Chemistry (250 / 500 / 1L)				-	· 	1 .	-		-		-	
Soil kit (2 SB, 1M, soil jar)				ļ		-		-		<u> </u>	-	
Glass Jar (120 / 250 / 500 / 1L)		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	-		-	-	-	
aboO xinaM	13	TW S	£0.	<u> </u>		ļ						<u> </u>
No.	2	8										

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1000389266

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000389266

Page 69 of 70

Enviro Tech Consultants, Inc. 5400 Rosedale Highway

Bakersfield, CA 93308

Reported: 08/26/2015 10:22

Project: Produced Water Pond Testing

Project Number: Fourstar
Project Manager: Kelsey Padilla

Notes And Definitions

J	Estimated Value (CLP Flag)
MDL	Method Detection Limit
ND	Analyte Not Detected
PQL .	Practical Quantitation Limit
A01	Detection and quantitation limits are raised due to sample dilution.
A02	The difference between duplicate readings is less than the quantitation limit.
A03	The sample concentration is more than 4 times the spike level.
A07	Detection and quantitation limits were raised due to sample dilution caused by high analyte concentration or matrix interference.
A17	Surrogate not reportable due to sample dilution.
A19	Surrogate is high due to matrix interference. Interferences verified through second extraction/analysis.
L01	The Laboratory Control Sample Water (LCSW) recovery is not within laboratory established control limits.
Q03	Matrix spike recovery(s) is(are) not within the control limits.
S09	The surrogate recovery on the sample for this compound was not within the control limits.
Z1	Discrepancy between hexavalent chromium and total chromium results may be due to matris interference.

Report ID: 1000389266

Page 70 of 70